Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 11: 543962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329014

RESUMO

Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.

2.
Front Oncol ; 8: 344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211122

RESUMO

Intercellular communication between cancer cells and other cells in the tumor microenvironment plays a defining role in tumor development. Tumors contain infiltrates of stromal cells and immune cells that can either promote or inhibit tumor growth, depending on the cytokine/chemokine milieu of the tumor microenvironment and their effect on cell activation status. Recent research has shown that stromal cells can also affect tumor growth through the donation of mitochondria to respiration-deficient tumor cells, restoring normal respiration. Nuclear and mitochondrial DNA mutations affecting mitochondrial respiration lead to some level of respiratory incompetence, forcing cells to generate more energy by glycolysis. Highly glycolytic cancer cells tend to be very aggressive and invasive with poor patient prognosis. However, purely glycolytic cancer cells devoid of mitochondrial DNA cannot form tumors unless they acquire mitochondrial DNA from adjacent cells. This perspective article will address this apparent conundrum of highly glycolytic cells and cover aspects of intercellular communication between tumor cells and cells of the microenvironment with particular emphasis on intercellular mitochondrial transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA