Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(39): 8168-8178, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37729640

RESUMO

The variational quantum eigensolver algorithm recently became a popular method to compute the quantum chemical properties of molecules on noisy intermediate scale quantum (NISQ) devices. In order to avoid noise accumulation from the NISQ device in the quantum circuit, it is important to keep the so-called quantum depth of the circuit at a minimum, defined as the minimum number of quantum gates that must be operated sequentially. In the present work, we introduce a modular 2-qubit cluster circuit that allows for the design of a shallow-depth quantum circuit compared to previously proposed architectures without loss of chemical accuracy. Moreover, by virtue of the simplicity of the cluster circuit, it is possible to assign a valence bond chemical interpretation to the cluster circuit. The design was tested on the H2, (H2)2, and LiH molecules, as well as the finite-size transverse-field Ising model, as the latter provides additional insights into the construction of the circuit in a resonating valence bond picture.

2.
J Comput Chem ; 43(7): 457-464, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34997762

RESUMO

Clar's aromatic π -sextet rule is a widely used qualitative method for assessing the electronic structure of polycyclic benzenoid hydrocarbons. Unfortunately, many of the quantum chemical concordances for this rule have a limited range of applicability. Here, we show that the fundamental probabilities associated with a distribution of electrons over domain partitions support Clar's rule in both mean-field and static correlation regimes. In particular, domain partitions that maximize those probabilities reflect the dominance of Clar structures in the electronic structure of these molecules. These findings suggest that extending methods that aim to maximize probabilities by deforming domain partitions could lead to novel quantum chemical underpinnings for many chemical concepts.

3.
J Chem Phys ; 156(24): 244115, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778100

RESUMO

The failure of many approximate electronic structure methods can be traced to their erroneous description of fractional charge and spin redistributions in the asymptotic limit toward infinity, where violations of the flat-plane conditions lead to delocalization and static correlation errors. Although the energetic consequences of the flat-planes are known, the underlying quantum phase transitions that occur when (spin)charge is redistributed have not been characterized. In this study, we use open subsystems to redistribute (spin)charges in the tilted Hubbard model by imposing suitable Lagrange constraints on the Hamiltonian. We computationally recover the flat-plane conditions and quantify the underlying quantum phase transitions using quantum entanglement measures. The resulting entanglement patterns quantify the phase transition that gives rise to the flat-plane conditions and quantify the complexity required to accurately describe charge redistributions in strongly correlated systems. Our study indicates that entanglement patterns can uncover those phase transitions that have to be modeled accurately if the delocalization and static correlation errors of approximate methods are to be reduced.

4.
J Chem Phys ; 153(10): 104110, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933287

RESUMO

Ground state eigenvectors of the reduced Bardeen-Cooper-Schrieffer Hamiltonian are employed as a wavefunction Ansatz to model strong electron correlation in quantum chemistry. This wavefunction is a product of weakly interacting pairs of electrons. While other geminal wavefunctions may only be employed in a projected Schrödinger equation, the present approach may be solved variationally with polynomial cost. The resulting wavefunctions are used to compute expectation values of Coulomb Hamiltonians, and we present results for atoms and dissociation curves that are in agreement with doubly occupied configuration interaction data. The present approach will serve as the starting point for a many-body theory of pairs, much as Hartree-Fock is the starting point for weakly correlated electrons.

5.
Phys Rev Lett ; 121(8): 080401, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192602

RESUMO

Adiabatically varying the driving frequency of a periodically driven many-body quantum system can induce controlled transitions between resonant eigenstates of the time-averaged Hamiltonian, corresponding to adiabatic transitions in the Floquet spectrum and presenting a general tool in quantum many-body control. Using the central spin model as an application, we show how such controlled driving processes can lead to a polarization-based decoupling of the central spin from its decoherence-inducing environment at resonance. While it is generally impossible to obtain the exact Floquet Hamiltonian in driven interacting systems, we exploit the integrability of the central spin model to show how techniques from quantum quenches can be used to explicitly construct the Floquet Hamiltonian in a restricted many-body basis and model Floquet resonances.

6.
J Chem Phys ; 148(8): 084104, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495792

RESUMO

In methods like geminal-based approaches or coupled cluster that are solved using the projected Schrödinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not N-representable. That is, the response 2-RDM does not correspond to an actual physical N-electron wave function. We present a new algorithm for making these non-N-representable 2-RDMs approximately N-representable, i.e., it has the right symmetry and normalization and it fulfills the P-, Q-, and G-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties which is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between this initial response 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, Q-matrix, and G-matrix are positive semidefinite, i.e., their eigenvalues are non-negative. Our method is suitable for fixing non-N-representable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.

7.
J Chem Phys ; 148(2): 024105, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29331147

RESUMO

This work proposes the variational determination of two-electron reduced density matrices corresponding to the ground state of N-electron systems within the doubly occupied-configuration-interaction methodology. The P, Q, and G two-index N-representability conditions have been extended to the T1 and T2 (T2') three-index ones and the resulting optimization problem has been addressed using a standard semidefinite program. We report results obtained from the doubly occupied-configuration-interaction method, from the two-index constraint variational procedure and from the two- and three-index constraint variational treatment. The discussion of these results along with a study of the computational cost demanded shows the usefulness of our proposal.

8.
J Chem Phys ; 143(10): 104106, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374017

RESUMO

A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.

9.
Phys Chem Chem Phys ; 16(11): 5061-5, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24488215

RESUMO

A new multireference perturbation approach has been developed for the recently proposed AP1roG scheme, a computationally facile parametrization of an antisymmetric product of nonorthogonal geminals. This perturbation theory of second-order closely follows the biorthogonal treatment from multiconfiguration perturbation theory as introduced by Surján et al., but makes use of the additional feature of AP1roG that the expansion coefficients within the space of closed-shell determinants are essentially correct already, which further increases the predictive power of the method. Building upon the ability of AP1roG to model static correlation, the perturbation correction accounts for dynamical electron correlation, leading to absolute energies close to full configuration interaction results. Potential surfaces for multiple bond dissociation in H2O and N2 are predicted with high accuracy up to bond breaking. The computational cost of the method is the same as that of conventional single-reference MP2.

10.
J Chem Phys ; 140(21): 214114, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24907997

RESUMO

We present a new, non-variational orbital-optimization scheme for the antisymmetric product of one-reference orbital geminal wave function. Our approach is motivated by the observation that an orbital-optimized seniority-zero configuration interaction (CI) expansion yields similar results to an orbital-optimized seniority-zero-plus-two CI expansion [L. Bytautas, T. M. Henderson, C. A. Jimenez-Hoyos, J. K. Ellis, and G. E. Scuseria, J. Chem. Phys. 135, 044119 (2011)]. A numerical analysis is performed for the C2 and LiF molecules, for the CH2 singlet diradical as well as for the symmetric stretching of hypothetical (linear) hydrogen chains. For these test cases, the proposed orbital-optimization protocol yields similar results to its variational orbital optimization counterpart, but prevents symmetry-breaking of molecular orbitals in most cases.

11.
J Chem Theory Comput ; 17(11): 6808-6818, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34597030

RESUMO

The failure of many density functional approximations can be traced to their behavior under fractional (spin)population redistributions in the asymptotic limit toward infinite bonding distances, which should obey the flat-plane conditions. However, such errors can only be characterized sufficiently in terms of those redistributions if exact energies are available for many possible (spin)population redistributions at different bonding distances. In this study, we propose to model such redistributions by imposing (spin)populations on atomic domains by constraining full configuration interaction wave functions. The resulting N-representable descriptions of small hydrogen chains at different bonding distances allow us to computationally illustrate the effects of the flat-plane conditions in the limit to infinite bond distances, leading to more chemical insight into those flat-plane conditions. As the proposed methodology is able to capture the effects of the flat plane conditions, it could be used to generate the reference data that is required to measure the extent to which approximate methods violate the requirements of the exact functional, leading to a quantification of the delocalization and static correlation error of such methods.

12.
J Chem Theory Comput ; 11(9): 4064-76, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575902

RESUMO

We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.

13.
Beilstein J Nanotechnol ; 5: 1738-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383285

RESUMO

The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å(3). The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials.

14.
J Chem Theory Comput ; 10(11): 4873-82, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26584374

RESUMO

We introduce new nonvariational orbital optimization schemes for the antisymmetric product of one-reference orbital geminal (AP1roG) wave function (also known as pair-coupled cluster doubles) that are extensions to our recently proposed projected seniority-two (PS2-AP1roG) orbital optimization method [ J. Chem. Phys. 2014 , 140 , 214114 )]. These approaches represent less stringent approximations to the PS2-AP1roG ansatz and prove to be more robust approximations to the variational orbital optimization scheme than PS2-AP1roG. The performance of the proposed orbital optimization techniques is illustrated for a number of well-known multireference problems: the insertion of Be into H2, the automerization process of cyclobutadiene, the stability of the monocyclic form of pyridyne, and the aromatic stability of benzene.

15.
J Chem Theory Comput ; 9(3): 1394-401, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-26587601

RESUMO

We propose an approach to the electronic structure problem based on noninteracting electron pairs that has similar computational cost to conventional methods based on noninteracting electrons. In stark contrast to other approaches, the wave function is an antisymmetric product of nonorthogonal geminals, but the geminals are structured so the projected Schrödinger equation can be solved very efficiently. We focus on an approach where, in each geminal, only one of the orbitals in a reference Slater determinant is occupied. The resulting method gives good results for atoms and small molecules. It also performs well for a prototypical example of strongly correlated electronic systems, the hydrogen atom chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA