Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 178, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789969

RESUMO

BACKGROUND: Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in patients with Type 1 Diabetes (T1D). Early markers of CVD include increased carotid intima-media thickness (CIMT) and pulse wave velocity (PWV), but these existing ultrasound technologies show limited spatial and temporal resolution in young adults. The purpose of this study is to evaluate the utility of high-resolution ultrasound modalities, including high frequency ultrasound CIMT (hfCIMT) and ultrafast ultrasound PWV (ufPWV), in young adults with Type 1 Diabetes. METHODS: This is a prospective single-center observational cohort study including 39 participants with T1D and 25 age and sex matched controls. All participants underwent hfCIMT and ufPWV measurements. hfCIMT and ufPWV measures of T1D were compared with controls and associations with age, sex, BMI, A1c, blood pressure, and lipids were studied. RESULTS: Mean age was 24.1 years old in both groups. T1D had a greater body mass index (27.7 [5.7] vs 23.1 [3.2] kg/m2), LDL Cholesterol, and estimated GFR, and had a mean A1c of 7.4 [1.0] % (57 mmol/mol) and diabetes duration of 16.1 [3.7] years with 56% using insulin pumps. In T1D, hfCIMT was significantly increased as compared to controls (0.435 ± 0.06 mm vs 0.379 ± 0.06 mm respectively, p < 0.01). ufPWV measures were significantly increased in T1D (systolic foot PWV: 5.29 ± 0.23 m/s vs 5.50 ± 0.37 m/s, p < 0.01; dicrotic notch PWV = 7.54 ± 0.46 m/s vs 7.92 ± 0.41 m/s, p < 0.01). Further, there was an impact of A1c-measured glycemia on hfCIMT, but this relationship was not seen with ufPWV. No significant statistical correlations between hfCIMT and ufPWV measures in either T1D or healthy controls were observed. CONCLUSION: Young adults with T1D present with differences in arterial thickness and stiffness when compared with controls. Use of novel high-resolution ultrasound measures describe important relationships between early structural and vascular pathophysiologic changes and are promising tools to evaluate pre-clinical CVD risk in youth with T1D. TRIAL REGISTRATION: ISRCTN91419926.


Assuntos
Espessura Intima-Media Carotídea , Diabetes Mellitus Tipo 1 , Valor Preditivo dos Testes , Análise de Onda de Pulso , Rigidez Vascular , Humanos , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Masculino , Feminino , Adulto Jovem , Estudos Prospectivos , Adulto , Estudos de Casos e Controles , Fatores Etários , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/fisiopatologia , Adolescente
2.
J Mol Med (Berl) ; 99(5): 663-671, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33398468

RESUMO

Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Indóis/administração & dosagem , Maleimidas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Transplante Heterólogo/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/imunologia , Inibidores Enzimáticos/sangue , Feminino , Humanos , Imunidade/efeitos dos fármacos , Indóis/sangue , Maleimidas/sangue , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Distribuição Tecidual , Resultado do Tratamento
3.
Sci Adv ; 6(30): eaba6884, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832666

RESUMO

More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Pneumonia Viral/terapia , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , COVID-19 , Infecções por Coronavirus/virologia , Doença Enxerto-Hospedeiro/terapia , Humanos , Engenharia Metabólica/métodos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Transplantados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA