Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351869

RESUMO

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Anticorpos Monoclonais/química , Receptores de IgG/metabolismo , Ressonância de Plasmônio de Superfície , Glicosilação , Temperatura , Trastuzumab
2.
Appl Microbiol Biotechnol ; 108(1): 307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656587

RESUMO

Surface plasmon resonance (SPR)-based biosensors have emerged as a powerful platform for bioprocess monitoring due to their ability to detect biointeractions in real time, without the need for labeling. Paramount for the development of a robust detection platform is the immobilization of a ligand with high specificity and affinity for the in-solution species of interest. Following the 2009 H1N1 pandemic, much effort has been made toward the development of quality control platforms for influenza A vaccine productions, many of which have employed SPR for detection. Due to the rapid antigenic drift of influenza's principal surface protein, hemagglutinin, antibodies used for immunoassays need to be produced seasonally. The production of these antibodies represents a 6-8-week delay in immunoassay and, thus, vaccine availability. This review focuses on SPR-based assays that do not rely on anti-HA antibodies for the detection, characterization, and quantification of influenza A in bioproductions and biological samples. KEY POINTS: • The single radial immunodiffusion assay (SRID) has been the gold standard for the quantification of influenza vaccines since 1979. Due to antigenic drift of influenza's hemagglutinin protein, new antibody reagents for the SRID assay must be produced each year, requiring 6-8 weeks. The resulting delay in immunoassay availability is a major bottleneck in the influenza vaccine pipeline. This review highlights ligand options for the detection and quantification of influenza viruses using surface plasmon resonance biosensors.


Assuntos
Vacinas contra Influenza , Controle de Qualidade , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Vacinas contra Influenza/imunologia , Humanos , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/diagnóstico , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Imunoensaio/métodos , Imunoensaio/normas , Técnicas Biossensoriais/métodos , Vírus da Influenza A/imunologia
3.
Langmuir ; 39(34): 12235-12247, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581531

RESUMO

We compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface. Finally, the nonspecific adsorption of wild-type trastuzumab on the gold surface was also assessed, with and without Kcoil peptides grafted on it beforehand. We developed a thorough workflow to systematically compare the immobilization strategies regarding the stability of nanoparticles, antibody coverage, and ability to specifically bind to HER2-positive breast cancer cells. All nanoparticles were highly monodisperse and retained their localized surface plasmon resonance properties after biofunctionalization. A significant increase in the amount of immobilized antibodies was observed with the two oriented coil-based strategies compared to nonspecific adsorption. Finally, all biofunctionalization strategies allowed for the detection of HER2-positive breast cancer cells, but among the investigated approaches, we recommend using the E/K coiled-coil-based strategy for gold nanoparticle biofunctionalization because it allows for the qualitative and quantitative detection of HER2-positive cells with a higher contrast compared to HER2-negative cells.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Trastuzumab , Feminino , Humanos , Neoplasias da Mama/diagnóstico , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Trastuzumab/química
4.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205578

RESUMO

Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.


Assuntos
Imunoglobulina G/metabolismo , Receptores de IgG/metabolismo , Ressonância de Plasmônio de Superfície
5.
J Am Chem Soc ; 142(35): 14843-14847, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32790294

RESUMO

In this study, we report lubrication properties of physisorbed zwitterionic bottlebrush polymers in the presence of multivalent ions using the surface force apparatus. Unlike polyelectrolyte brushes, the lubrication properties of which diminish drastically in the presence of multivalent ions at concentrations as low as 0.1 mM, zwitterionic bottlebrush polymers exhibit friction coefficients as low as ∼10-3 at such concentrations of multivalent ions up to intermediate normal loads. This lubrication ability persists until surface wear occurs at high normal loads. The surface wear is demonstrated to be triggered by the multivalent ions bridging the polymer chains and dehydrating the zwitterionic moieties. Finally, the analysis of the polymer film stability suggests that the partial desorption of polymers in the presence of the ions does not affect the lubrication performance. Therefore, even in the physisorbed state, zwitterionic brushes perform significantly better than covalently grafted polyelectrolyte brushes in the presence of multivalent ions.

6.
Langmuir ; 35(48): 15585-15591, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31333025

RESUMO

Using the surface force apparatus (SFA), the interaction forces between mica surfaces across ionic liquid (IL) solutions are studied. The IL solution, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide in propylene carbonate solvent, is used at different concentrations to elucidate the ions' conformation at the interface from the analysis of short-range structural forces. A direct correlation between the ion layer thickness at the interface and the IL molar fraction in the solution is observed, suggesting conformational changes relative to the ion packing density. In addition, effects of large microscopic and macroscopic water domains at the interface are investigated. The microscopic water domains induced significant adhesion at contact because of the long-range capillary forces, which are found to depend on solvent concentration. The macroscopic water domains entirely cover the interaction area, ensuring that the long-range interfacial interactions occur entirely across the aqueous electrolyte solution with dissolved IL ions as the electrolyte. These results help elucidate the interfacial interactions in IL-charged solid interfaces with practical importance in green energy storage, catalysis, and lubrication.

7.
Langmuir ; 35(48): 15535-15542, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478669

RESUMO

Challenges associated with nonspecific adsorption of proteins on sensor surfaces have steered the development of novel antifouling materials and strategies. Inspired by human synovial fluid composition and structure, we designed synergistic antifouling coatings with mixtures of hyaluronic acid (HA) and a zwitterionic bottlebrush polymer (BB). Using a fast and convenient online surface modification method, the polymers were immobilized on the Au surface, significantly increasing its hydrophilicity. Using surface plasmon resonance (SPR), a 10:1 ratio of HA to BB was found optimal to provide the best antifouling performance. Bovine serum albumin (BSA) adsorption on HA-BB coated surfaces was 0.2 ng/cm2, which was 60 times lower than BB or HA alone and 25 times lower than the commonly accepted ultralow adsorption limit (<5 ng/cm2), demonstrating the synergistic effect of HA and BB against nonspecific protein adsorption. This was found to be independent of BSA concentration up to physiological concentrations. Furthermore, the antifouling performance of HA-BB coated surfaces was tested against milk and serum, showing almost 92% lower protein adsorption than that on bare surfaces, suggesting the potential efficacy of this antifouling coating in real life settings.

8.
Biomacromolecules ; 20(5): 1926-1936, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30951296

RESUMO

Affinity-based systems represent a promising solution to control the delivery of therapeutics using hydrogels. Here, we report a hybrid system that is based on the peptidic E/K coiled coil affinity pair to mediate the release of gold nanoparticles (NPs) from alginate scaffolds. On one hand, the gold NPs were functionalized with the Ecoil-tagged epidermal growth factor (EGF). The bioactivity of the grafted EGF and the bioavailability of the Ecoil moiety were confirmed by EGF receptor phosphorylation assays and by capturing the functionalized NPs on a Kcoil-derivatized surface. On the other hand, alginate chains were modified with azido-homoalanine Kcoil (Aha-Kcoil) by azide-alkyne click chemistry. The hybrid system was formed by dispersing NPs functionalized with the Ecoil-tagged EGF in alginate hydrogels containing either 0, 10, or 20% of Kcoil-modified alginate (Alg-Kcoil). With 20% of Alg-Kcoil, the release of Ecoil-functionalized NPs was reduced by half when compared to the release of NPs without Ecoil, whereas little to no differences were noticed with either 0 or 10% of Alg-Kcoil. Differential dynamic microscopy was used to determine the diffusion coefficient of the NPs, and the results showed a decrease in the diffusion coefficient of Ecoil-functionalized NPs, when compared to bare PEGylated NPs. Altogether, our data demonstrated that the E/K coiled coil system can control the release of NPs in a high Kcoil content alginate gel, opening diverse applications in drug delivery.


Assuntos
Alginatos/química , Hidrogéis/química , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Ouro/química , Humanos , Ligação Proteica
9.
Angew Chem Int Ed Engl ; 58(5): 1308-1314, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426644

RESUMO

Demand for long-lasting antifouling surfaces has steered the development of accessible, novel, biocompatible and environmentally friendly materials. Inspired by lubricin (LUB), a component of mammalian synovial fluid with excellent antifouling properties, three block polymers offering stability, efficacy, and ease of use were designed. The bottlebrush-structured polymers adsorbed strongly on silica surfaces in less than 10 minutes by a simple drop casting or online exposure method and were extremely stable in high-salinity solutions and across a wide pH range. Antifouling properties against proteins and bacteria were evaluated with different techniques and ultralow fouling properties demonstrated. With serum albumin and lysozyme adsorption <0.2 ng cm-2 , the polymers were 50 and 25 times more effective than LUB and known ultralow fouling coatings. The antifouling properties were also tested under MPa compression pressures by direct force measurements using surface forces apparatus. The findings suggest that these polymers are among the most robust and efficient antifouling agents currently known.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Muramidase/antagonistas & inibidores , Polímeros/farmacologia , Albumina Sérica/antagonistas & inibidores , Adsorção , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/química , Estrutura Molecular , Muramidase/metabolismo , Polímeros/química , Propriedades de Superfície
10.
Bioconjug Chem ; 29(11): 3866-3876, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30350572

RESUMO

Thiol(-click) chemistry has been extensively investigated to conjugate (bio)molecules to polymers. Handling of cysteine-containing molecules may however be cumbersome, especially in the case of fast-oxidizing coiled-coil-forming peptides. In the present study, we investigated the practicality of a one-pot process to concomitantly reduce and conjugate an oxidized peptide to a polymer. Three thiol-based conjugation chemistries (vinyl sulfone (VS), maleimide, and pyridyldithiol) were assayed along with three reducing agents (tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol, and ß-mercaptoethanol). Seven out of the nine possible combinations significantly enhanced the conjugation yield, provided that an adequate concentration of reductant was used. Among them, the coincubation of an oxidized peptide with TCEP and a VS-modified polymer displayed the highest level of conjugation. Our results also provide insights into two topics that currently lack consensus: TCEP is stable in 10 mM phosphate buffered saline and it reacts with thiol-alkylating agents at submillimolar concentrations, and thus should be carefully used in order to avoid interference with thiol-based conjugation reactions.


Assuntos
Química Click/métodos , Peptídeos/química , Polímeros/química , Substâncias Redutoras/química , Compostos de Sulfidrila/química , Alquilação , Maleimidas/síntese química , Maleimidas/química , Oxirredução , Peptídeos/síntese química , Polímeros/síntese química , Substâncias Redutoras/síntese química , Compostos de Sulfidrila/síntese química , Sulfonas/síntese química , Sulfonas/química
11.
Langmuir ; 33(8): 1780-1791, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28182436

RESUMO

Syngas is the product of gasification processes and is used for the production of petrochemicals. Little attention has been paid to its use in the production of oligomeric thin films under ambient conditions. Herein, the nature of the photoinitiated chemical vapor deposition of films made from syngas using high-wavelength ultraviolet light is discussed, including an exploration of the oligomeric films' structure, synthesis mechanism, and growth kinetics. Specifically, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analyses provide insight into the chemical structure, illustrating the effect of photogenerated radicals in the formation of aliphatic, anhydride, and cyclic structures. The films are covalently bonded to the substrate and chemically uniform. Electron and atomic force microscopy identify an islandlike morphology for the deposit. These insights into the mechanism and structure are linked to processing parameters through a study on the effect of residence time and treatment duration on the deposition rate, as determined through profilometry.

12.
Biomacromolecules ; 18(3): 965-975, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28122454

RESUMO

We have developed a heterodimeric coiled-coil system based on two complementary peptides, namely (EVSALEK)5 and (KVSALKE)5, or E and K, for the attachment of E-tagged biomolecules onto K-decorated biomaterials. We here explore two approaches to control the strength and the stability of the E/K coiled-coil complex, and thus its potential for the controlled release of biomolecules. Those are Leucine-to-Alanine mutations in the K peptide (4 peptides with 0 to 3 mutations) and multivalent presentation of the E peptide (6 bio-objects from monomeric to dimeric and n-meric). Using E-tagged growth factors and nanoparticles as models, SPR-based assays performed under continuous flow indicated that the release rate was strongly affected by both approaches independently, and that the strength of the capture could be finely tuned over a wide range (apparent dissociation constant from 0.12 pM to 270 nM). Further release assays carried out in well-plates showed that the multivalent presentation only had a significant influence in this setup since the wells were not rinsed under continuous flow.


Assuntos
Materiais Biocompatíveis/química , Preparações de Ação Retardada/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Dimerização , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Mutação , Nanopartículas/química
13.
Biomacromolecules ; 18(1): 303-310, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27997154

RESUMO

The patency of small-diameter (<6 mm) synthetic vascular grafts (VGs) is still limited by the absence of a confluent, blood flow-resistant monolayer of endothelial cells (ECs) on the lumen and of vascular smooth muscle cell (VSMC) growth into the media layer. In this research, electrospinning has been combined with bioactive coatings based on chondroitin sulfate (CS) to create scaffolds that possess optimal morphological and bioactive properties for subsequent cell seeding. We fabricated random and aligned electrospun poly(ethylene terephthalate), ePET, mats with small pores (3.2 ± 0.5 or 3.9 ± 0.3 µm) and then investigated the effects of topography and bioactive coatings on EC adhesion, growth, and resistance to shear stress. Bioactive coatings were found to dominate the cell behavior, which enabled creation of a near-confluent EC monolayer that resisted physiological shear-flow conditions. CS is particularly interesting since it prevents platelet adhesion, a key issue to avoid blood clot formation in case of an incomplete EC monolayer or partial cell detachment. Regarding the media layer, circumferentially oriented nanofibers with larger pores (6.3 ± 0.5 µm) allowed growth, survival, and inward penetration of VSMCs, especially when the CS was further coated with tethered, oriented epithelial growth factor (EGF). In summary, the techniques developed here can lead to adequate scaffolds for the luminal and media layers of small-diameter synthetic VGs.


Assuntos
Prótese Vascular , Sulfatos de Condroitina/química , Eletroquímica , Células Endoteliais da Veia Umbilical Humana/citologia , Músculo Liso Vascular/citologia , Nanofibras/química , Engenharia Tecidual/métodos , Animais , Aorta Torácica/citologia , Adesão Celular , Células Cultivadas , Humanos , Polietilenotereftalatos/química , Ratos , Estresse Mecânico , Alicerces Teciduais
14.
Appl Microbiol Biotechnol ; 101(21): 7837-7851, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28924963

RESUMO

Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon α2b (IFNα2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFNα2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFNα2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.


Assuntos
Interferon-alfa/isolamento & purificação , Interferon-alfa/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Amônia/metabolismo , Sobrevivência Celular , Meios de Cultura/química , Expressão Gênica , Glucose/metabolismo , Células HEK293 , Humanos , Interferon alfa-2 , Interferon-alfa/química , Interferon-alfa/genética , Lactatos/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ressonância de Plasmônio de Superfície
15.
J Mol Recognit ; 29(2): 60-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26762306

RESUMO

We here report the production of four biotinylated Fcγ receptor (FcγR) ectodomains and their subsequent stable capture on streptavidin-biosensor surfaces. For receptor biotinylation, we first describe an in-cell protocol based on the co-transfection of two plasmids corresponding to one of the FcγR ectodomains and the BirA enzyme in mammalian cells. This strategy is compared with a standard sequential in vitro enzymatic biotinylation with respect to biotinylation level and yield. Biotinylated FcγR ectodomains that have been prepared with both strategies are then compared by analytical ultracentrifugation and surface plasmon resonance (SPR) analyses. Overall, we demonstrate that in-cell biotinylation is an interesting alternative to standard biotinylation protocol, as it requires less purification steps while yielding higher titers. Finally, biotin-tagged FcγRs produced with the in-cell approach are successfully applied to the development of SPR-based assays to evaluate the impact of the glycosylation pattern of monoclonal antibodies on their interaction with CD16a and CD64. In that endeavor, we unambiguously observe that highly galactosylated trastuzumab (TZM-gal), non-glycosylated trastuzumab (TZM-NG), and reference trastuzumab are characterized by different kinetic profiles upon binding to CD16a and CD64 that had been captured at the biosensor surface via their biotin tag. More precisely, while TZM-NG binding to CD16a was not detected, TZM-gal formed a more stable complex with CD16a than our reference TZM. In contrast, both glycosylated TZM bound to captured CD64 in a stable and similar fashion, whereas the interaction of their non-glycosylated form with CD64 was characterized by a higher dissociation rate.


Assuntos
Técnicas Biossensoriais/métodos , Receptores de IgG/química , Estreptavidina/química , Trastuzumab/metabolismo , Animais , Biotinilação , Células CHO , Cricetulus , Galactose/química , Células HEK293 , Humanos , Ressonância de Plasmônio de Superfície , Transfecção , Trastuzumab/química
16.
Amino Acids ; 48(2): 567-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26459292

RESUMO

A de novo heterodimeric coiled-coil system formed by the association of two synthetic peptides, the Ecoil and Kcoil, has been previously designed and proven to be an excellent and versatile tool for various biotechnology applications. However, based on the challenges encountered during its chemical synthesis, the Kcoil peptide has been designated as a "difficult peptide". In this study, we explore the expression of the Kcoil peptide by a bacterial system as well as its subsequent purification. The maximum expression level was observed when the peptide was fused to thioredoxin and the optimized purification process consisted of three chromatographic steps: immobilized-metal affinity chromatography followed by cation-exchange chromatography and, finally, a reverse-phase high-performance liquid chromatography. This entire process led to a final volumetric production yield of 1.5 mg of pure Kcoil peptide per liter of bacterial culture, which represents a significant step towards the cost-effective production and application of coiled-coil motifs. Our results thus demonstrate for the first time that bacterial production is a viable alternative to the chemical synthesis of de novo designed coil peptides.


Assuntos
Técnicas de Química Sintética/métodos , Escherichia coli/metabolismo , Biossíntese Peptídica/fisiologia , Peptídeos/metabolismo , Motivos de Aminoácidos , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Estrutura Terciária de Proteína , Tiorredoxinas/metabolismo
17.
J Vasc Interv Radiol ; 27(5): 753-760.e3, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27036642

RESUMO

PURPOSE: To evaluate the potential of a bioactive coating based on chondroitin sulfate (CS) and tethered epidermal growth factor (EGF) for improvement of healing around stent grafts (SGs). MATERIALS AND METHODS: The impact of the bioactive coating on cell survival was tested in vitro on human vascular cells using polyethylene terephthalate films (PET) as a substrate. After being transferred onto a more "realistic" material (expanded polytetrafluoroethylene [ePTFE]), the durability and mechanical behavior of the coating and cell survival were studied. Preliminary in vivo testing was performed in a canine iliac aneurysm model reproducing type I endoleaks (three animals with one control and one bioactive SG for each). RESULTS: CS and EGF coatings significantly increased survival of human smooth muscle cells and fibroblasts compared with bare PET or ePTFE (P < .05). The coating also displayed good durability over 30 days according to enzyme-linked immunosorbent assay and cell survival tests. The coating did not affect mechanical properties of ePTFE and was successfully transferred onto commercial SGs for in vivo testing. No difference was observed on computed tomography and macroscopic examinations in endoleak persistence at 3 months, but the bioactive coating deposited on the abluminal surface of the SG (exposed to the vessel wall) increased the percentage of healed tissue in the aneurysm. No adverse effect, such as neointima formation or thrombosis, was observed. CONCLUSIONS: The bioactive coating promoted in vitro cell survival, displayed good durability, and was successfully transferred onto a commercial SG. Preliminary in vivo results suggest improved healing around bioactive SGs.


Assuntos
Implante de Prótese Vascular/instrumentação , Prótese Vascular , Sulfatos de Condroitina/administração & dosagem , Materiais Revestidos Biocompatíveis , Fator de Crescimento Epidérmico/administração & dosagem , Aneurisma Ilíaco/cirurgia , Artéria Ilíaca/cirurgia , Stents , Animais , Implante de Prótese Vascular/efeitos adversos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Angiografia por Tomografia Computadorizada , Modelos Animais de Doenças , Cães , Endoleak/etiologia , Endoleak/prevenção & controle , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Aneurisma Ilíaco/diagnóstico por imagem , Aneurisma Ilíaco/patologia , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/patologia , Teste de Materiais , Microscopia Confocal , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Projetos Piloto , Polietilenotereftalatos , Politetrafluoretileno , Desenho de Prótese , Fatores de Tempo , Cicatrização/efeitos dos fármacos
18.
Biomacromolecules ; 16(6): 1682-94, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25877934

RESUMO

Biofunctionalization strategies have been developed to improve small-diameter vascular grafts. However, a fully successful coating featuring antithrombogenic properties while allowing for endothelialization has not been achieved yet. In this report, we explored the combination of low-fouling polyethylene glycol (PEG) and adhesion peptides, namely, RGD, YIGSR, and REDV, grafted on top of polyvinylamine (PVAm)-coated polyester. The peptides were grafted over a wide range of density (ca. 20-2000 pmol/cm(2)) on top of a dense PEG underlayer. The coating performances were assessed through HUVEC adhesion, platelet attachment, and protein adsorption, which were all drastically diminished on PEG-coated samples. RGD exhibited the expected high adhesive properties, toward both HUVEC and platelets. REDV had no effect neither on platelet attachment, as expected, nor on HUVEC adhesion, in contrast with previous reports. YIGSR was the most promising sequence even though its combination with other agents should be explored to further decrease thrombogenicity for vascular graft applications.


Assuntos
Fibrinolíticos/química , Oligopeptídeos/química , Poliésteres/química , Plaquetas/efeitos dos fármacos , Adesão Celular , Fibrinolíticos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Oligopeptídeos/farmacologia , Polietilenoglicóis/química , Polivinil/química
19.
Biomacromolecules ; 16(6): 1671-81, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25876439

RESUMO

Polymeric nanocarriers are attractive nonviral vectors for gene delivery purposes in vivo. For such applications, numerous physiological and subcellular bottlenecks have to be overcome. In that endeavor, each structural feature of nanocarriers can be optimized with respect to its corresponding challenges. Here, we focused on the interface between a model gene delivery nanocarrier and relevant constituents of the physiological environment. We screened a library of carboxymethylated dextrans (CMD) for the electrostatic coating of positively charged nanocarriers. We evaluated the jointed influence of the CMD molecular weight and charge density upon nanocarrier coating with respect to DNase, small ions, plasma proteins, red blood cells, and target cells. A total of 4 out of 26 CMD coated nanocarriers successfully passed every screening assay, but did not yield increased reporter gene expression in target cells compared to uncoated nanocarriers. The fine-tuning of CMD for nanocarrier coating yielded a relevant shortlist of candidates that will be further tested in vivo.


Assuntos
Dextranos/química , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Nanocápsulas/química , Animais , Linhagem Celular Tumoral , Dextranos/efeitos adversos , Eritrócitos/efeitos dos fármacos , Humanos , Ovinos , Eletricidade Estática
20.
Biomacromolecules ; 16(11): 3445-54, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26393367

RESUMO

Numerous strategies have been proposed to decorate biomaterials with growth factors (GFs) for tissue engineering applications; their practicability as clinical tools, however, remains uncertain. We previously presented two complementary amphipathic peptides, namely, E5 and K5, which could be utilized as tags to direct GF capture onto organic materials via E5/K5 coiled-coil interactions. We here investigated their potential as mediators of GF physical adsorption. Enzyme-linked immunosorbent assays highlighted that both electrostatic and hydrophobic interactions could contribute to the adsorption process, without interfering with the peptides propensity for coiled-coil interactions. E5-tagged vascular endothelial growth factor, in particular, was efficiently adsorbed to poly(allylamine)-functionalized polystyrene, was maintained in a bioactive state and was steadily liberated over several days with little initial burst. This simple immobilization procedure was successfully applied to poly(ethylene terephthalate) films. Altogether, our data demonstrated that coil-tag-directed adsorption is a tunable, versatile and straightforward strategy to decorate biomaterials with GFs.


Assuntos
Proteínas Imobilizadas/química , Peptídeos/química , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/química , Adsorção , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poliaminas/química , Polietilenotereftalatos/química , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA