RESUMO
BACKGROUND: The U.S. antibiotic market failure has threatened future innovation and supply. Understanding when and why clinicians underutilize recently approved gram-negative antibiotics might help prioritize the patient in future antibiotic development and potential market entry rewards. OBJECTIVE: To determine use patterns of recently U.S. Food and Drug Administration (FDA)-approved gram-negative antibiotics (ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, plazomicin, eravacycline, imipenem-relebactam-cilastatin, and cefiderocol) and identify factors associated with their preferential use (over traditional generic agents) in patients with gram-negative infections due to pathogens displaying difficult-to-treat resistance (DTR; that is, resistance to all first-line antibiotics). DESIGN: Retrospective cohort. SETTING: 619 U.S. hospitals. PARTICIPANTS: Adult inpatients. MEASUREMENTS: Quarterly percentage change in antibiotic use was calculated using weighted linear regression. Machine learning selected candidate variables, and mixed models identified factors associated with new (vs. traditional) antibiotic use in DTR infections. RESULTS: Between quarter 1 of 2016 and quarter 2 of 2021, ceftolozane-tazobactam (approved 2014) and ceftazidime-avibactam (2015) predominated new antibiotic usage whereas subsequently approved gram-negative antibiotics saw relatively sluggish uptake. Among gram-negative infection hospitalizations, 0.7% (2551 [2631 episodes] of 362 142) displayed DTR pathogens. Patients were treated exclusively using traditional agents in 1091 of 2631 DTR episodes (41.5%), including "reserve" antibiotics such as polymyxins, aminoglycosides, and tigecycline in 865 of 1091 episodes (79.3%). Patients with bacteremia and chronic diseases had greater adjusted probabilities and those with do-not-resuscitate status, acute liver failure, and Acinetobacter baumannii complex and other nonpseudomonal nonfermenter pathogens had lower adjusted probabilities of receiving newer (vs. traditional) antibiotics for DTR infections, respectively. Availability of susceptibility testing for new antibiotics increased probability of usage. LIMITATION: Residual confounding. CONCLUSION: Despite FDA approval of 7 next-generation gram-negative antibiotics between 2014 and 2019, clinicians still frequently treat resistant gram-negative infections with older, generic antibiotics with suboptimal safety-efficacy profiles. Future antibiotics with innovative mechanisms targeting untapped pathogen niches, widely available susceptibility testing, and evidence demonstrating improved outcomes in resistant infections might enhance utilization. PRIMARY FUNDING SOURCE: U.S. Food and Drug Administration; NIH Intramural Research Program.
Assuntos
Antibacterianos , Infecções por Bactérias Gram-Negativas , Padrões de Prática Médica , Humanos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Estados Unidos , Padrões de Prática Médica/estatística & dados numéricos , Combinação de Medicamentos , Masculino , Tazobactam/uso terapêutico , Feminino , Pessoa de Meia-Idade , Cefalosporinas/uso terapêutico , Cefiderocol , Compostos Azabicíclicos/uso terapêutico , Aprovação de Drogas , Sisomicina/análogos & derivados , Sisomicina/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , United States Food and Drug Administration , Ceftazidima , TetraciclinasRESUMO
OBJECTIVES: COVID-19 pandemic surges strained hospitals globally. We performed a systematic review to examine measures of pandemic caseload surge and its impact on mortality of hospitalized patients. DATA SOURCES: PubMed, Embase, and Web of Science. STUDY SELECTION: English-language studies published between December 1, 2019, and November 22, 2023, which reported the association between pandemic "surge"-related measures and mortality in hospitalized patients. DATA EXTRACTION: Three authors independently screened studies, extracted data, and assessed individual study risk of bias. We assessed measures of surge qualitatively across included studies. Given multidomain heterogeneity, we semiquantitatively aggregated surge-mortality associations. DATA SYNTHESIS: Of 17,831 citations, we included 39 studies, 17 of which specifically described surge effects in ICU settings. The majority of studies were from high-income countries ( n = 35 studies) and included patients with COVID-19 ( n = 31). There were 37 different surge metrics which were mapped into four broad themes, incorporating caseloads either directly as unadjusted counts ( n = 11), nested in occupancy ( n = 14), including additional factors (e.g., resource needs, speed of occupancy; n = 10), or using indirect proxies (e.g., altered staffing ratios, alternative care settings; n = 4). Notwithstanding metric heterogeneity, 32 of 39 studies (82%) reported detrimental adjusted odds/hazard ratio for caseload surge-mortality outcomes, reporting point estimates of up to four-fold increased risk of mortality. This signal persisted among study subgroups categorized by publication year, patient types, clinical settings, and country income status. CONCLUSIONS: Pandemic caseload surge was associated with lower survival across most studies regardless of jurisdiction, timing, and population. Markedly variable surge strain measures precluded meta-analysis and findings have uncertain generalizability to lower-middle-income countries (LMICs). These findings underscore the need for establishing a consensus surge metric that is sensitive to capturing harms in everyday fluctuations and future pandemics and is scalable to LMICs.
Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Mortalidade Hospitalar , Pandemias , Capacidade de Resposta ante Emergências , Unidades de Terapia Intensiva/estatística & dados numéricos , Unidades de Terapia Intensiva/organização & administração , SARS-CoV-2 , Carga de Trabalho/estatística & dados numéricosRESUMO
NADPH oxidases (NOX's), and the reactive oxygen species (ROS) they produce, play an important role in host defense, thyroid hormone synthesis, apoptosis, gene regulation, angiogenesis and other processes. However, overproduction of ROS by these enzymes is associated with cardiovascular disease, fibrosis, traumatic brain injury (TBI) and other diseases. Structural similarities between NOX's have complicated development of specific inhibitors. Here, we report development of NCATS-SM7270, a small molecule optimized from GSK2795039, that inhibited NOX2 in primary human and mouse granulocytes. NCATS-SM7270 specifically inhibited NOX2 and had reduced inhibitory activity against xanthine oxidase in vitro. We also studied the role of several NOX isoforms during mild TBI (mTBI) and demonstrated that NOX2 and, to a lesser extent, NOX1 deficient mice are protected from mTBI pathology, whereas injury is exacerbated in NOX4 knockouts. Given the pathogenic role played by NOX2 in mTBI, we treated mice transcranially with NCATS-SM7270 after injury and revealed a dose-dependent reduction in mTBI induced cortical cell death. This inhibitor also partially reversed cortical damage observed in NOX4 deficient mice following mTBI. These data demonstrate that NCATS-SM7270 is an improved and specific inhibitor of NOX2 capable of protecting mice from NOX2-dependent cell death associated with mTBI.