Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Prep Biochem Biotechnol ; 52(1): 70-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33941018

RESUMO

The newly isolated Burkholderia gladioli BRM58833 strain was shown to secrete an alkaline lipase highly active and stable in organic solvents. Lipase production was optimized through the cultivation of the strain by solid-state fermentation in wheat bran. The lipase extraction conditions were also optimized. The low-cost extract obtained has shown a high hydrolytic activity of 1096.7 ± 39.3 U·gds-1 (units per gram of dry solids) against pNPP and 374.2 ± 20.4 U·gds-1 against triolein. Proteomic analysis revealed the optimized extract is composed of two esterases and three true lipases, showing a preference for long-chain substrates. The highest activity was obtained at 50 °C and pH 9. However, the extract maintained more than 50% of its maximum activity between pH 8.0 and 10.0 and throughout the whole temperature range evaluated (32-70 °C). The enzymes were inhibited by SDS, EDTA, ZnSO4 and FeCl3 and activated by FeSO4, MgCl2 and BaCl2. The lipases conserved their activity when incubated in solvents as acetonitrile, diethyl ether, n-heptane n-hexane, toluene, methanol and t-butanol. The resistance of these lipases to solvents and expressive thermostability when compared to other lipases, reveal their potential both in hydrolysis reactions and in synthesis of esters.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia gladioli/metabolismo , Lipase/metabolismo , Proteínas de Bactérias/isolamento & purificação , Burkholderia gladioli/isolamento & purificação , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/isolamento & purificação , Proteômica , Especificidade por Substrato
2.
Appl Microbiol Biotechnol ; 102(6): 2753-2761, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29435619

RESUMO

We have investigated the use of the gene coding for acetamidase (amdS) as a recyclable dominant marker for the methylotrophic yeast Komagataella phaffii in order to broaden its genetic toolbox. First, the endogenous constitutive AMD2 gene (a putative acetamidase) was deleted generating strain LA1. A cassette (amdSloxP) was constructed bearing a codon-optimized version of the Aspergillus nidulans amdS gene flanked by loxP sites for marker excision with Cre recombinase. This cassette was successfully tested as a dominant selection marker for transformation of the LA1 strain after selection on plates containing acetamide as a sole nitrogen source. Finally, amdSloxP was used to sequentially disrupt the K. phaffii ADE2 and URA5 genes. After each disruption event, a Cre-mediated marker recycling step was performed by plating cells on medium containing fluoroacetamide. In conclusion, amdS proved to be a suitable tool for K. phaffii transformation and marker recycling thus providing a new antibiotic-free system for genetic manipulation of this yeast.


Assuntos
Amidoidrolases/metabolismo , Engenharia Genética/métodos , Saccharomycetales/genética , Seleção Genética , Transformação Genética , Amidoidrolases/genética , Técnicas de Inativação de Genes , Recombinação Genética
3.
Microb Cell Fact ; 16(1): 99, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28595601

RESUMO

BACKGROUND: A commonly used approach to improve recombinant protein production is to increase the levels of expression by providing extra-copies of a heterologous gene. In Komagataella phaffii (Pichia pastoris) this is usually accomplished by transforming cells with an expression vector carrying a drug-resistance marker following a screening for multicopy clones on plates with increasingly higher concentrations of an antibiotic. Alternatively, defective auxotrophic markers can be used for the same purpose. These markers are generally transcriptionally impaired genes lacking most of the promoter region. Among the defective markers commonly used in Saccharomyces cerevisiae is leu2-d, an allele of LEU2 which is involved in leucine metabolism. Cells transformed with this marker can recover prototrophy when they carry multiple copies of leu2-d in order to compensate the poor transcription from this defective allele. RESULTS: A K. phaffii strain auxotrophic for leucine (M12) was constructed by disrupting endogenous LEU2. The resulting strain was successfully transformed with a vector carrying leu2-d and an EGFP (enhanced green fluorescent protein) reporter gene. Vector copy numbers were determined from selected clones which grew to different colony sizes on transformation plates. A direct correlation was observed between colony size, number of integrated vectors and EGFP production. By using this approach we were able to isolate genetically stable clones bearing as many as 20 integrated copies of the vector and with no significant effects on cell growth. CONCLUSIONS: In this work we have successfully developed a genetic system based on a defective auxotrophic which can be applied to improve heterologous protein production in K. phaffii. The system comprises a K. phaffii leu2 strain and an expression vector carrying the defective leu2-d marker which allowed the isolation of multicopy clones after a single transformation step. Because a linear correlation was observed between copy number and heterologous protein production, this system may provide a simple approach to improve recombinant protein productivity in K. phaffii.


Assuntos
Marcadores Genéticos/genética , Pichia/genética , Plasmídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Biotechnol Lett ; 38(3): 509-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26585331

RESUMO

OBJECTIVES: To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter. RESULTS: P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants. CONCLUSIONS: A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.


Assuntos
Expressão Gênica , Marcação de Genes/métodos , Vetores Genéticos , Genética Microbiana/métodos , Fosfoglicerato Quinase/genética , Pichia/genética , Regiões Promotoras Genéticas , Pichia/enzimologia , Plasmídeos
5.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921397

RESUMO

Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts.

6.
AMB Express ; 13(1): 131, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989852

RESUMO

The methylotrophic yeast Komagataella phaffii is one of the most important microbial platforms to produce recombinant proteins. Despite its importance in the context of industrial biotechnology, the use of synthetic biology approaches in K. phaffii is hampered by the fact that few genetic tools are available for precise control of gene expression in this system. In this work, we used an RNA aptamer activated by tetracycline to modulate protein production at the translational level. Using lacZ as gene reporter, we have demonstrated significant reduction of the heterologous protein upon addition of tetracycline. Furthermore, this genetic control device was applied for the control of Ku70p. This protein is involved in non-homologous recombination and the control of its production paves the way for the development of strains exhibiting higher rates of homologous recombination.

7.
Biochem Biophys Rep ; 29: 101193, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128079

RESUMO

Immobilization of lipase from Burkholderia gladioli BRM58833 on octyl sepharose (OCT) resulted in catalysts with higher activity and stability. Following, strategies were studied to further stabilize and secure the enzyme to the support using functionalized polymers, like polyethylenimine (PEI) and aldehyde-dextran (DEXa), to cover the catalyst with layers at different combinations. Alternatively, the construction of a bifunctional layer was studied using methoxypolyethylene glycol amine (NH 2 -PEG) and glycine. The catalyst OCT-PEI-DEXa was the most thermostable, with a 263.8-fold increase in stability when compared to the control condition. When evaluated under alkaline conditions, OCT-DEXa-PEG 10 /Gly was the most stable, reaching stability 70.1 times greater than the control condition. Proportionally, the stabilization obtained for B. gladioli BRM58833 lipase was superior to that obtained for the commercial B. cepacia lipase. Preliminary results in the hydrolysis of fish oil demonstrated the potential of the coating technique with bifunctional polymers, resulting in a stable catalyst with greater catalytic capacity for the production of omega-3 PUFAs. According to the results obtained, it is possible to modulate B. gladioli BRM58833 lipase properties like stability and catalytic activity for enrichment of omega-3 fatty acids.

8.
Microbiol Spectr ; 10(5): e0150422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36005449

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Humanos , Animais , Cryptococcus neoformans/genética , Histonas , Higromicina B , Interações Hospedeiro-Patógeno , Neomicina , Biologia
9.
Bioresour Technol ; 363: 127999, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152978

RESUMO

Liquefaction of high solid loadings of unpretreated corn stover pellets has been demonstrated with rheology of the resulting slurries enabling mixing and movement within biorefinery bioreactors. However, some forms of pelleted stover do not readily liquefy, so it is important to screen out lots of unsuitable pellets before processing is initiated. This work reports a laboratory assay that rapidly assesses whether pellets have the potential for enzyme-based liquefaction at high solids loadings. Twenty-eight pelleted corn stover (harvested at the same time and location) were analyzed using 20 mL enzyme solutions (3 FPU cellulase/ g biomass) at 30 % w/v solids loading. Imaging together with measurement of reducing sugars were performed over 24-hours. Some samples formed concentrated slurries of 300 mg/mL (dry basis) in the small-scale assay, which was later confirmed in an agitated bioreactor. Also, the laboratory assay showed potential for optimizing enzyme formulations that could be employed for slurry formation.


Assuntos
Celulase , Zea mays , Reatores Biológicos , Hidrólise , Açúcares
10.
Microorganisms ; 9(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202822

RESUMO

Sugarcane bagasse is an agricultural residue rich in xylose, which may be used as a feedstock for the production of high-value-added chemicals, such as xylonic acid, an organic acid listed as one of the top 30 value-added chemicals on a NREL report. Here, Zymomonas mobilis was engineered for the first time to produce xylonic acid from sugarcane bagasse hydrolysate. Seven coding genes for xylose dehydrogenase (XDH) were tested. The expression of XDH gene from Paraburkholderia xenovorans allowed the highest production of xylonic acid (26.17 ± 0.58 g L-1) from 50 g L-1 xylose in shake flasks, with a productivity of 1.85 ± 0.06 g L-1 h-1 and a yield of 1.04 ± 0.04 gAX/gX. Deletion of the xylose reductase gene further increased the production of xylonic acid to 56.44 ± 1.93 g L-1 from 54.27 ± 0.26 g L-1 xylose in a bioreactor. Strain performance was also evaluated in sugarcane bagasse hydrolysate as a cheap feedstock, which resulted in the production of 11.13 g L-1 xylonic acid from 10 g L-1 xylose. The results show that Z. mobilis may be regarded as a potential platform for the production of organic acids from cheap lignocellulosic biomass in the context of biorefineries.

11.
J Biomed Biotechnol ; 2010: 674908, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20168977

RESUMO

Urate oxidase (EC 1.7.3.3) is an enzyme involved in purine metabolism which is used in the treatment of gout and as diagnostic reagent for detection of uric acid. In order to produce this enzyme in large quantities for biotechnological purposes, the gene coding for the Bacillus subtilis urate oxidase was cloned and heterologously expressed in Escherichia coli. Time course induction in E. coli showed an induced protein with an apparent molecular mass of approximately 60 kDa. Soluble recombinant enzyme was purified in a single-step procedure using Ni-NTA column. The enzyme was purified 2.1-fold with a yield of 56% compared to the crude extract. MALDI-TOF analysis revealed an ion with a mass of 58675 Da which is in agreement with the expected mass of the recombinant protein. The purified enzyme showed an optimal pH and temperature of 8.0 and 37 degrees C, respectively, and retained 90% of its activity after 72 hours of incubation at -20 degrees C and 4 degrees C.


Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/metabolismo , Urato Oxidase/genética , Urato Oxidase/isolamento & purificação , Clonagem Molecular , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Fatores de Tempo , Urato Oxidase/química
12.
PLoS One ; 15(7): e0235532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614905

RESUMO

The yeast Komagataella phaffii is widely used as a microbial host for heterologous protein production. However, molecular tools for this yeast are basically restricted to a few integrative and replicative plasmids. Four sequences that have recently been proposed as the K. phaffii centromeres could be used to develop a new class of mitotically stable vectors. In this work, we designed a color-based genetic assay to investigate plasmid stability in K. phaffii and constructed vectors bearing K. phaffii centromeres and the ADE3 marker. These genetic tools were evaluated in terms of mitotic stability by transforming an ade2/ade3 auxotrophic strain and regarding plasmid copy number by quantitative PCR (qPCR). Our results confirmed that the centromeric plasmids were maintained at low copy numbers as a result of typical chromosome-like segregation during cell division. These features, combined with in vivo assembly possibilities, prompt these plasmids as a new addition to the K. phaffii genetic toolbox.


Assuntos
Centrômero/genética , Colorimetria/métodos , Pichia/genética , Plasmídeos/análise , DNA Fúngico/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Bioengineered ; 8(5): 441-445, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28399696

RESUMO

Komagataella phaffii (formerly Pichia pastoris) is a well-known fungal system for heterologous protein production in the context of modern biotechnology. To obtain higher protein titers in this system many researchers have sought to optimize gene expression by increasing the levels of transcription of the heterologous gene. This has been typically achieved by manipulating promoter sequences or by generating clones bearing multiple copies of the desired gene. The aim of this work is to describe how these different molecular strategies have been applied in K. phaffii presenting their advantages and drawbacks.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Melhoramento Genético/métodos , Regiões Promotoras Genéticas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Fatores de Transcrição/biossíntese , Clonagem Molecular/métodos , Dosagem de Genes/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas Recombinantes/genética , Fatores de Transcrição/genética
14.
AMB Express ; 5(1): 84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26698316

RESUMO

The term cellulase refers to any component of the enzymatic complex produced by some fungi, bacteria and protozoans which act serially or synergistically to catalyze the cleavage of cellulosic materials. Cellulases have been widely used in many industrial applications ranging from food industry to the production of second generation ethanol. In an effort to develop new strategies to minimize the costs of enzyme production we describe the development of a Pichia pastoris strain able to coproduce two different cellulases. For that purpose the eglII (endoglucanase II) and cbhII (cellobiohydrolase II) genes from Trichoderma reesei were fused in-frame separated by the self-processing 2A peptide sequence from the foot-and-mouth disease virus. The protein fusion construct was placed under the control of the strong inducible AOX1 promoter. Analysis of culture supernatants from methanol-induced yeast transformants showed that the protein fusion was effectively processed. Enzymatic assay showed that the processed enzymes were fully functional with the same catalytic properties of the individual enzymes produced separately. Furthermore, when combined both enzymes acted synergistically on filter paper to produce cellobiose as the main end-product. Based on these results we propose that P. pastoris should be considered as an alternative platform for the production of cellulases at competitive costs.

15.
Braz. j. microbiol ; 34(1): 33-38, Jan.-Apr. 2003. graf
Artigo em Inglês | LILACS | ID: lil-344562

RESUMO

Two isolates of Trichoderma, which reduce the incidence of witches'broom disease caused in cocoa by Crinipellis perniciosa, were evaluated for their potential to produce hydrolases in liquid medium. Very low or no hydrolytic activity was produced in the absence of any substrate. The activities of chitinase, N-acetylglucosaminidase, beta-1,3-glucanase, total cellulase, endoglucanase, aryl- beta-glucosidase, beta-glucosidase, protease and amylase increased dramatically within 72-120 h of growth in the presence of specific substrates. Except for N-acetylglucosaminidase and beta-glucosidase Trichoderma harzianum isolate 1051 produced the largest amounts of hydrolases. The possible involvement of these enzymes in the antagonistic interaction between Trichoderma and C. perniciosa is discussed.


Assuntos
Acetil-CoA Hidrolase , Doenças das Plantas/genética , Genes Fúngicos/genética , Técnicas In Vitro , Trichoderma , Ativação Enzimática , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA