Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Syst Evol Microbiol ; 69(1): 146-152, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30457516

RESUMO

Five strains of Gram-stain-negative, rod-shaped bacteria were isolated from Carmichaelia and Montigena root nodules. Based on 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and to be most closely related to Mesorhizobium jarvisii ATCC 33669T (100-99.6 % sequence similarity), Mesorhizobium huakuii IAM 14158T (99.9-99.6 %), Mesorhizobium japonicum MAFF303099T (99.8-99.6 %) and Mesorhizobium erdmanii USDA 3471T (99.8-99.5 %). Additionally, the strains formed distinct groups based on housekeeping gene analysis and were most closely related to M. jarvisii ATCC 33669T (89.6-89.5 and 97.6-97.3 % sequence similarity for glnII and recA, respectively), M. erdmanii USDA 3471T (94.3-94.0 and 94.9-94.1 %), M. japonicum MAFF303099T (90.0-89.9 and 96.7-96.2 %) and M. huakuii IAM 14158T (89.9-90.0 and 95.4-94.9 %). Chemotaxonomic data supported the assignment of the strains to the genus Mesorhizobium and DNA-DNA hybridizations, average nucleotide identity analysis, matrix-assisted laser desorption ionization time-of-flight MS analysis, physiological and biochemical tests differentiated them genotypically and phenotypically from their nearest neighbouring species. Therefore, these strains are considered to represent a novel species, for which the name Mesorhizobium carmichaelinearum sp. nov. is proposed. The type strain is ICMP 18942T (=MonP1N1T=LMG 28414T).


Assuntos
Fabaceae/microbiologia , Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mesorhizobium/isolamento & purificação , Nova Zelândia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Int J Syst Evol Microbiol ; 68(8): 2607-2614, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29957169

RESUMO

Nine Gram-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules. All strains were able to nodulate and fix nitrogen with Lebeckia ambigua apart from WSM4178T, WSM4181 and WSM4182. Based on the 16S rRNA gene phylogeny, all strains were closely related to Paraburkholderia species (98.4-99.9 %), belonging to the Betaproteobacteria class and Burkholderiaceae family. According to 16S rRNA gene phylogeny the closest relative for WSM4174-WSM4177 and WSM4179-WSM4180 was Paraburkholderia tuberum(99.80-99.86 %), for WSM4178T was Paraburkholderia caledonica (98.42 %) and for WSM4181-WSM4182 was Paraburkholderia graminis (99.79 %). Analysis of the gyrB and recA housekeeping genes supported the assignment of WSM4181-WSM4182 to P. graminis and the other investigated strains could be assigned to the genus Paraburkholderia. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of WSM4178T from the closest validly published Paraburkholderia species. However, WSM4174-WSM4177 and WSM4179-WSM4180 could not reliably be distinguished from its closest neighbour and therefore complete genome comparison was performed between WSM4176 and P. tuberum STM678T which gave ANI values of 96-97 %. Chemotaxonomic data, including fatty acid profiles and quinone data supported the assignment of the strains to the genus Paraburkholderia. On the basis of genotypic and phenotypic data one novel species, Paraburkholderiafynbosensis sp. nov. (WSM4178T=LMG 27177T=HAMBI 3356T), is proposed and the isolation of P. tuberum and P. graminis from root nodules of Lebeckia ambigua is reported.


Assuntos
Burkholderiaceae/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Quinonas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Simbiose
3.
Arch Microbiol ; 199(5): 657-664, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28180951

RESUMO

Thirteen Gram-negative, aerobic, motile with polar flagella, rod-shaped bacteria were isolated from root nodules of Centrolobium paraense Tul. grown in soils from the Amazon region of Brazil. Growth of strains was observed at temperature range 20-36 °C (optimal 28 °C), pH ranges 5-11 (optimal 6.0-7.0), and 0.1-0.5%NaCl (optimal 0.1-0.3%). Analysis of 16S rRNA gene placed the strains into two groups within Bradyrhizobium. Closest neighbouring species (98.8%) for group I was B. neotropicale while for group II were 12 species with more than 99% of similarity. Multi-locus sequence analysis (MLSA) with dnaK, glnII, recA, and rpoB confirmed B. neotropicale BR 10247T as the closest type strain for the group I and B. elkanii USDA 76T and B. pachyrhizi PAC 48T for group II. Average Nucleotide Identity (ANI) differentiated group I from the B. neotropicale BR 10247T (79.6%) and group II from B. elkanii USDA 76T and B. pachyrhizi PAC 48T (88.1% and 87.9%, respectively). Fatty acid profiles [majority C16:0 and Summed feature 8 (18:1ω6c/18:1ω7c) for both groups], DNA G + C content, and carbon compound utilization supported the placement of the novel strains in the genus Bradyrhizobium. Gene nodC and nifH of the new strains have in general low similarity with other Bradyrhizobium species. Both groups nodulated plants from the tribes Crotalarieae, Dalbergiae, Genisteae, and Phaseoleae. Based on the presented data, two novel species which the names Bradyrhizobium centrolobii and Bradyrhizobium macuxiense are proposed, with BR 10245T (=HAMBI 3597T) and BR 10303T (=HAMBI 3602T) as the respective-type strains.


Assuntos
Bradyrhizobium , Fabaceae/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Bactérias/genética , Composição de Bases/genética , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Ácidos Graxos/química , Tipagem de Sequências Multilocus , N-Acetilglucosaminiltransferases/genética , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Hibridização de Ácido Nucleico , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
4.
Mol Plant Microbe Interact ; 29(8): 609-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27269511

RESUMO

Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/genética , Genoma Bacteriano/genética , Mimosa/microbiologia , Simbiose/genética , Burkholderia/enzimologia , Burkholderia/fisiologia , Cupriavidus/enzimologia , Cupriavidus/genética , Cupriavidus/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Transferência Genética Horizontal , Nitrogênio/metabolismo , Fixação de Nitrogênio , Filogenia , Nodulação/genética , RNA Ribossômico 16S/genética , Fatores de Transcrição/genética
5.
Int J Syst Evol Microbiol ; 66(2): 786-795, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610329

RESUMO

In total, 31 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora root nodules and authenticated as rhizobia on this host. Based on 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, with the representative strains ICMP 19560T, ICMP 19523T, ICMP 19535T, ICMP 19545T and ICMP 19512T being related most closely to Mesorhizobium sangaii SCAU7T (99.9-99.6 % similarity), Mesorhizobium cantuariense ICMP 19515T (99.7-99.6 %) and Mesorhizobium ciceri UMP-CA7T (99.7-99.5 %). Additionally, the novel strains formed distinct groups based on housekeeping gene sequence analysis and were closely related to Mesorhizobium waimense ICMP 19557T (93.5-94.9, 92.5-95.6 and 94.2-96.0 %), M. cantuariense ICMP 19515T (93.1-97.7, 93.5-95.4 and 94.8-96.8 %) and M. ciceri UMP-CA7T (93.2-97.2, 94.6-96.8 and 95.5-97.3 %) for glnII, recA and rpoB, respectively. Chemotaxonomic data supported the assignment of the strains to the genus Mesorhizobium, and DNA-DNA hybridizations, matrix-assisted laser desorption/ionization time-of-flight MS analysis, enterobacterial repetitive intergenic consensus PCR, physiological and biochemical tests allowed the genotypic and phenotypic differentiation from their nearest neighbouring species. Therefore, these strains represent five novel species for which the names Mesorhizobium calcicola sp. nov. (type strain ICMP 19560T = LMG 28224T = HAMBI 3609T), Mesorhizobium waitakense sp. nov. (type strain ICMP 19523T = LMG 28227T = HAMBI 3605T), Mesorhizobium sophorae sp. nov. (type strain ICMP 19535T = LMG 28223T = HAMBI 3606T), Mesorhizobium newzealandense sp. nov. (type strain ICMP 19545T = LMG 28226T = HAMBI 3607T) and Mesorhizobium kowhaii sp. nov. (type strain ICMP 19512T = LMG 28222T = HAMBI 3603T) are proposed.

6.
Int J Syst Evol Microbiol ; 65(10): 3419-3426, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296780

RESUMO

In total 14 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora longicarinata and Sophora microphylla root nodules and authenticated as rhizobia on these hosts. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and the strains from S. longicarinata were most closely related to Mesorhizobium amorphae ACCC 19665T (99.8­99.9 %), Mesorhizobium huakuii IAM 14158T (99.8­99.9 %), Mesorhizobium loti USDA 3471T (99.5­99.9 %) and Mesorhizobium septentrionale SDW 014T (99.6­99.8 %), whilst the strains from S. microphylla were most closely related to Mesorhizobium ciceri UPM-Ca7T (99.8­99.9 %), Mesorhizobium qingshengii CCBAU 33460T (99.7 %) and Mesorhizobium shangrilense CCBAU 65327T (99.6 %). Additionally, these strains formed two distinct groups in phylogenetic trees of the housekeeping genes glnII, recA and rpoB. Chemotaxonomic data, including fatty acid profiles, supported the assignment of the strains to the genus Mesorhizobium and allowed differentiation from the closest neighbours. Results of DNA­DNA hybridizations, MALDI-TOF MS analysis, ERIC-PCR, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their closest neighbouring species. Therefore, the strains isolated from S. longicarinata and S. microphylla represent two novel species for which the names Mesorhizobium waimense sp. nov. (ICMP 19557T = LMG 28228T = HAMBI 3608T) and Mesorhizobium cantuariense sp. nov. (ICMP 19515T = LMG 28225T = HAMBI 3604T), are proposed respectively.


Assuntos
Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Sophora/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mesorhizobium/genética , Mesorhizobium/isolamento & purificação , Dados de Sequência Molecular , Nova Zelândia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 65(12): 4716-4723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410793

RESUMO

Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.0 (optimum, pH 6.0-7.0) and with 0-2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0-99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4-99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclov ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA­DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data,these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. nov. is proposed, with the type strain ICMP 19430T (=LMG28415T=HAMBI 3637T).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Espécies Introduzidas , Dados de Sequência Molecular , Nova Zelândia , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Austrália Ocidental
8.
Int J Syst Evol Microbiol ; 64(Pt 4): 1090-1095, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24368690

RESUMO

Three strains of Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene sequence phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM3556(T) being most closely related to Burkholderia caledonica LMG 23644(T) (98.70 % 16S rRNA gene sequence similarity) and Burkholderia rhynchosiae WSM3937(T) (98.50 %). Additionally, these strains formed a distinct group in phylogenetic trees of the housekeeping genes gyrB and recA. Chemotaxonomic data, including fatty acid profiles and analysis of respiratory quinones, supported the assignment of our strains to the genus Burkholderia. Results of DNA-DNA hybridizations, MALDI-TOF MS analysis and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their nearest neighbour species. Therefore, these strains represent a novel species, for which the name Burkholderia dilworthii sp. nov. is proposed, with the type strain WSM3556(T) ( = LMG 27173(T) = HAMBI 3353(T)).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
9.
Int J Syst Evol Microbiol ; 64(Pt 10): 3395-3401, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25013231

RESUMO

Root-nodule bacteria were isolated from Inga laurina (Sw.) Willd. growing in the Cerrado Amazon region, State of Roraima, Brazil. The 16S rRNA gene sequences of six strains (BR 10250(T), BR 10248, BR 10249, BR 10251, BR 10252 and BR 10253) showed low similarities with currently described species of the genus Bradyrhizobium. Phylogenetic analyses of sequences of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05(T) to be the closest type strain (97.4% sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [with the major components C16:0 and summed feature 8 (C18:1ω6c/C18:1ω7c)], the slow growth rate and carbon compound utilization patterns supported the assignment of our strains to the genus Bradyrhizobium. Results from DNA-DNA hybridizations and physiological traits differentiated our strains from the closest related species of the genus Bradyrhizobium with validly published names. Sequences of symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped together with those of B. iriomotense EK05(T) and Bradyrhizobium sp. strains BR 6610 (used as a commercial inoculant for Inga marginata in Brazil) and TUXTLAS-10 (previously observed in Central America). Based on these data, the six strains represent a novel species, for which the name Bradyrhizobium ingae sp. nov. is proposed. The type strain is BR 10250(T) ( = HAMBI 3600(T)).


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
10.
Int J Syst Evol Microbiol ; 64(Pt 12): 3950-3957, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205796

RESUMO

Root nodule bacteria were isolated from Centrolobium paraense Tul. grown in soils from the Amazon region, State of Roraima (Brazil). 16S rRNA gene sequence analysis of seven strains (BR 10247(T), BR 10296, BR 10297, BR 10298, BR 10299, BR 10300 and BR 10301) placed them in the genus Bradyrhizobium with the closest neighbours being the type strains of Bradyrhizobium paxllaeri (98.8 % similarity), Bradyrhizobium icense (98.8 %), Bradyrhizobium lablabi (98.7 %), Bradyrhizobium jicamae (98.6 %), Bradyrhizobium elkanii (98.6 %), Bradyrhizobium pachyrhizi (98.6 %) and Bradyrhizobium retamae (98.3 %). This high similarity, however, was not confirmed by the intergenic transcribed spacer (ITS) 16S-23S rRNA region sequence analysis nor by multi-locus sequence analysis. Phylogenetic analyses of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05(T) ( = LMG 24129(T)) to be the most closely related type strain (95.7 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [major components being C16 : 0 and summed feature 8 (18 : 1ω6c/18 : 1ω7c)], DNA G+C content, slow growth rate and carbon compound utilization patterns, supported the placement of the novel strains in the genus Bradyrhizobium. Results of DNA-DNA relatedness studies and physiological data (especially carbon source utilization) differentiated the strains from the closest recognized species of the genus Bradyrhizobium. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) placed the novel species in a new branch within the genus Bradyrhizobium. Based on the current data, these seven strains represent a novel species for which the name Bradyrhizobium neotropicale sp. nov. is proposed. The type strain is BR 10247(T) ( = HAMBI 3599(T)).


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA , Simbiose
11.
Int J Syst Evol Microbiol ; 64(Pt 7): 2358-2363, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24744018

RESUMO

Root nodule bacteria were trapped within cowpea (Vigna unguiculata) in soils with different cultivation histories collected from the Amazonian rainforest in northern Brazil. Analysis of the 16S rRNA gene sequences of six strains (BR 3351(T), BR 3307, BR 3310, BR 3315, BR 3323 BR and BR 3361) isolated from cowpea nodules showed that they formed a distinct group within the genus Bradyrhizobium, which was separate from previously identified type strains. Phylogenetic analyses of three housekeeping genes (glnII, recA and rpoB) revealed that Bradyrhizobium huanghuaihaiense CCBAU 23303(T) was the most closely related type strain (96% sequence similarity or lower). Chemotaxonomic data, including fatty acid profiles (predominant fatty acids being C16 : 0 and summed feature 8), the slow growth rate and carbon compound utilization patterns supported the assignment of the strains to the genus Bradyrhizobium. The results of DNA-DNA hybridizations, antibiotic resistance and physiological tests differentiated these novel strains from the most closely related species of the genus Bradyrhizobium with validly published names. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped the novel strains of the genus Bradyrhizobium together with Bradyrhizobium iriomotense strain EK05(T), with 94% and 96% sequence similarity, respectively. Based on these data, these six strains represent a novel species for which the name Brabyrhizobium manausense sp. nov. (BR 3351(T) = HAMBI 3596(T)), is proposed.


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
12.
Int J Syst Evol Microbiol ; 63(Pt 11): 3944-3949, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710046

RESUMO

Two strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules of the South African legume Rhynchosia ferulifolia and authenticated on this host. Based on phylogenetic analysis of the 16S rRNA gene, strains WSM3930 and WSM3937(T) belonged to the genus Burkholderia, with the highest degree of sequence similarity to Burkholderia terricola (98.84 %). Additionally, the housekeeping genes gyrB and recA were analysed since 16S rRNA gene sequences are highly similar between closely related species of the genus Burkholderia. The results obtained for both housekeeping genes, gyrB and recA, showed the highest degree of sequence similarity of the novel strains towards Burkholderia caledonica LMG 19076(T) (94.2 % and 94.5 %, respectively). Chemotaxonomic data, including fatty acid profiles and respiratory quinone data supported the assignment of strains WSM3930 and WSM3937(T) to the genus Burkholderia. DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains WSM3930 and WSM3937(T) from the most closely related species of the genus Burkholderia with validly published names. We conclude, therefore, that these strains represent a novel species for which the name Burkholderia rhynchosiae sp. nov. is proposed, with strain WSM3937(T) ( = LMG 27174(T) = HAMBI 3354(T)) as the type strain.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 63(Pt 11): 3950-3957, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710047

RESUMO

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM5005(T) being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia. Results of DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005(T) = LMG 27175(T) = HAMBI 3357(T)) is proposed.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genótipo , Funções Verossimilhança , Dados de Sequência Molecular , Hibridização de Ácido Nucleico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
14.
Int J Syst Evol Microbiol ; 62(Pt 10): 2505-2510, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22155761

RESUMO

Gram-negative, rod-shaped bacteria were isolated from root nodules of Lupinus polyphyllus, Lathyrus latifolius and Robinia pseudoacacia. Based on the 16S rRNA gene phylogeny, they were closely related to Bosea species (100-97 % similarity), belonging to the class Alphaproteobacteria, family Bradyrhizobiaceae. The closest relatives of LMG 26383(T), LMG 26379(T) and LMG 26381(T) were respectively the type strains of Bosea thiooxidans (99.6 %), B. eneae (98.3 %) and B. minatitlanensis (99.0 %). Chemotaxonomic data, including major fatty acid profiles, supported the assignment of our strains to the genus Bosea. Analysis of the concatenated sequences of five housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) and the results of DNA-DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from each other and from the five Bosea species with validly published names. No nodA or nodC genes could be amplified, while nifH PCR gave non-specific products. On the basis of genotypic and phenotypic data, three novel species, Bosea lupini sp. nov. (type strain LMG 26383(T)  = CCUG 61248(T)  = R-45681(T)), Bosea lathyri sp. nov. (type strain LMG 26379(T)  = CCUG 61247(T)  = R-46060(T)) and Bosea robiniae sp. nov. (type strain LMG 26381(T)  = CCUG 61249(T)  = R-46070(T)), are proposed.


Assuntos
Bradyrhizobiaceae/classificação , Fabaceae/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA
15.
Int J Syst Evol Microbiol ; 62(Pt 11): 2579-2588, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22199210

RESUMO

Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus Microvirga, with ≥ 96.1% sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6(T) and WSM3557(T) was Microvirga flocculans TFB(T), with 97.6-98.0% similarity, while WSM3693(T) was most closely related to Microvirga aerilata 5420S-16(T), with 98.8% similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6(T), WSM3557(T) and WSM3693(T) within the genus Microvirga. DNA-DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6(T), WSM3557(T) and WSM3693(T) from each other and from other Microvirga species with validly published names. The nodA sequence of Lut6(T) was placed in a clade that contained strains of Rhizobium, Mesorhizobium and Sinorhizobium, while the 100% identical nodA sequences of WSM3557(T) and WSM3693(T) clustered with Bradyrhizobium, Burkholderia and Methylobacterium strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6(T), WSM3557(T) and WSM3693(T) were most closely related to that of Rhizobium etli CFN42(T) nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of Microvirga are proposed: Microvirga lupini sp. nov. (type strain Lut6(T) =LMG 26460(T) =HAMBI 3236(T)), Microvirga lotononidis sp. nov. (type strain WSM3557(T) =LMG 26455(T) =HAMBI 3237(T)) and Microvirga zambiensis sp. nov. (type strain WSM3693(T) =LMG 26454(T) =HAMBI 3238(T)).


Assuntos
Fabaceae/microbiologia , Methylobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Methylobacteriaceae/genética , Methylobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fixação de Nitrogênio , Nodulação , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Texas , Zâmbia
16.
Syst Appl Microbiol ; 45(3): 126316, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339818

RESUMO

Since the discovery of Paraburkholderia tuberum, an indigenous South African species and one of the first beta-rhizobia described, several other South African rhizobial Paraburkholderia species have been recognized. Here, we investigate the taxonomic status of 31 rhizobial isolates from the root nodules of diverse South African legume hosts in the Core Cape Subregion, which were initially identified as P. tuberum. These isolates originate from the root nodules of genera in the Papilionoideae as well as Vachellia karroo, from the subfamily Caesalpinioideae. Genealogical concordance analysis of five loci allowed delineation of the isolates into two putative species clusters (A and B). Cluster A included P. tuberum STM678T, suggesting that this monophyletic group represents P. tuberum sensu stricto. Cluster B grouped sister to P. tuberum and included isolates from the Paarl Rock Nature Reserve in the Western Cape Province. Average Nucleotide Identity (ANI) analysis further confirmed that isolates of Cluster A shared high genome similarity with P. tuberum STM678T compared to Cluster B and other Paraburkholderia species. The members of Cluster B associated with a single species of Podalyria, P. calyptrata. For this new taxon we accordingly propose the name Paraburkholderia podalyriae sp. nov., with the type strain WC7.3bT (= LMG 31413T; SARCC 750T). Based on our nodA and nifH phylogenies, P. podalyriae sp. nov. and strains of P. tuberum sensu stricto (including one from V. karroo) belong to symbiovar africana, the symbiotic loci of which have a separate evolutionary origin to those of Central and South American Paraburkholderia strains.


Assuntos
Fabaceae , Rhizobium , Burkholderiaceae , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Análise de Sequência de DNA , África do Sul
17.
Syst Appl Microbiol ; 44(1): 126152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276286

RESUMO

Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.


Assuntos
Burkholderiaceae/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , México , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
18.
Syst Appl Microbiol ; 41(4): 291-299, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29571921

RESUMO

Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.


Assuntos
Phaseolus/microbiologia , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Quênia , N-Acetilglucosaminiltransferases/genética , Fixação de Nitrogênio/fisiologia , Filogenia , Nodulação/fisiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Microbiologia do Solo , Simbiose/genética , Fatores de Transcrição/genética
19.
Syst Appl Microbiol ; 41(6): 641-649, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30145046

RESUMO

Given that phosphate supplies may diminish and become uneconomic to mine after 2020, there is a compelling need to develop alternative industries to support the population on Christmas Island. Former mine sites could be turned into productive agricultural land, however, large-scale commercial agriculture has never been attempted, and, given the uniqueness of the island, the diversity of rhizobia prior to introducing legumes needed evaluation. Therefore, 84 rhizobia isolates were obtained from nine different hosts, both crop and introduced legumes, located at seven sites across the island. Based on 16S rRNA and recA gene sequence analysis, the isolates grouped into 13 clades clustering within the genus Bradyrhizobium, Ensifer, Cupriavidus and Rhizobium. According to the sequences of their symbiosis genes nodC and nifH, the isolates were classified into 12 and 11 clades, respectively, and clustered closest to tropical or crop legume isolates. Moreover, the symbiosis gene phylogeny and Multi Locus Sequence Analysis gene phylogeny suggested vertical transmission in the Alpha-rhizobia but horizontal transmission within the Beta-rhizobia. Furthermore, this study provides evidence of a large diversity of endemic rhizobia associated with both crop and introduced legumes, and highlights the necessity of inoculation for common bean, chickpea and soybean on the Island.


Assuntos
Bradyrhizobiaceae/classificação , Fabaceae/microbiologia , Mineração , Rhizobiaceae/classificação , Nódulos Radiculares de Plantas/microbiologia , Agricultura , Austrália , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Fosfatos , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Simbiose
20.
Genome Announc ; 5(43)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074646

RESUMO

We report here the complete genome sequence of Mesorhizobium sophorae ICMP 19535T This strain was isolated from Sophora microphylla root nodules and can nodulate and fix nitrogen with this host and also with Sophora prostrata, Sophora longicarinata, and Clianthus puniceus The genome consists of 8.05 Mb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA