Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Ecol ; 32(10): 2472-2483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34843142

RESUMO

The deployment of plant varieties carrying resistance genes (R) exerts strong selection pressure on pathogen populations. Rapidly evolving avirulence genes (Avr) allow pathogens to escape R-mediated plant immunity through a variety of mechanisms, leading to virulence. The poplar rust fungus Melampsora larici-populina is a damaging pathogen of poplars in Europe. It underwent a major adaptive event in 1994, with the breakdown of the poplar RMlp7 resistance gene. Population genomics studies identified a locus in the genome of M. larici-populina that probably corresponds to the candidate avirulence gene AvrMlp7. Here, to further characterize this effector, we used a population genetics approach on a comprehensive set of 281 individuals recovered throughout a 28-year period encompassing the resistance breakdown event. Using two dedicated molecular tools, genotyping at the candidate locus highlighted two different alterations of a predominant allele found mainly before the resistance breakdown: a nonsynonymous mutation and a complete deletion of this locus. This results in six diploid genotypes: three genotypes related to the avirulent phenotype and three related to the virulent phenotype. The temporal survey of the candidate locus revealed that both alterations were found in association during the resistance breakdown event. They pre-existed before the breakdown in a heterozygous state with the predominant allele cited above. Altogether, these results suggest that the association of both alterations at the candidate locus AvrMlp7 drove the poplar rust adaptation to RMlp7-mediated immunity. This study demonstrates for the first time a case of adaptation from standing genetic variation in rust fungi during a qualitative resistance breakdown.


Assuntos
Basidiomycota , Mutação Puntual , Mutação , Europa (Continente) , Genética Populacional , Fungos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
2.
Mol Ecol ; 26(7): 1902-1918, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28012228

RESUMO

Host-parasite systems provide convincing examples of Red Queen co-evolutionary dynamics. Yet, a key process underscored in Van Valen's theory - that arms race dynamics can result in extinction - has never been documented. One reason for this may be that most sampling designs lack the breadth needed to illuminate the rapid pace of adaptation by pathogen populations. In this study, we used a 25-year temporal sampling to decipher the demographic history of a plant pathogen: the poplar rust fungus, Melampsora larici-populina. A major adaptive event occurred in 1994 with the breakdown of R7 resistance carried by several poplar cultivars widely planted in Western Europe since 1982. The corresponding virulence rapidly spread in M. larici-populina populations and nearly reached fixation in northern France, even on susceptible hosts. Using both temporal records of virulence profiles and temporal population genetic data, our analyses revealed that (i) R7 resistance breakdown resulted in the emergence of a unique and homogeneous genetic group, the so-called cultivated population, which predominated in northern France for about 20 years, (ii) selection for Vir7 individuals brought with it multiple other virulence types via hitchhiking, resulting in an overall increase in the population-wide number of virulence types and (iii) - above all - the emergence of the cultivated population superseded the initial population which predominated at the same place before R7 resistance breakdown. Our temporal analysis illustrates how antagonistic co-evolution can lead to population extinction and replacement, hence providing direct evidence for the escalation process which is at the core of Red Queen dynamics.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Populus/microbiologia , Basidiomycota/genética , Basidiomycota/patogenicidade , Bélgica , Evolução Molecular , França , Genótipo , Interações Hospedeiro-Patógeno/genética , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Seleção Genética , Virulência/genética
3.
Nature ; 480(7378): 520-4, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22089132

RESUMO

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.


Assuntos
Evolução Biológica , Genoma de Planta , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Simbiose , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Glycine max/genética , Sintenia , Vitis/genética
4.
Proc Natl Acad Sci U S A ; 109(21): 8316-21, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566631

RESUMO

Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.


Assuntos
Fabaceae , Medicago truncatula , Micorrizas/metabolismo , Proteínas R-SNARE/metabolismo , Rhizobium/metabolismo , Simbiose/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Exocitose/fisiologia , Fabaceae/genética , Fabaceae/metabolismo , Fabaceae/microbiologia , Inativação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Filogenia , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Populus/microbiologia , Transdução de Sinais/fisiologia , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiologia
5.
New Phytol ; 201(3): 961-972, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24400903

RESUMO

The symbiosis between legumes and nitrogen-fixing rhizobia co-opted pre-existing endomycorrhizal features. In particular, both symbionts release lipo-chitooligosaccharides (LCOs) that are recognized by LysM-type receptor kinases. We investigated the evolutionary history of rhizobial LCO receptor genes MtLYK3-LjNFR1 to gain insight into the evolutionary origin of the rhizobial symbiosis. We performed a phylogenetic analysis integrating gene copies from nonlegumes and legumes, including the non-nodulating, phylogenetically basal legume Cercis chinensis. Signatures of differentiation between copies were investigated through patterns of molecular evolution. We show that two rounds of duplication preceded the evolution of the rhizobial symbiosis in legumes. Molecular evolution patterns indicate that the resulting three paralogous gene copies experienced different selective constraints. In particular, one copy maintained the ancestral function, and another specialized into perception of rhizobial LCOs. It has been suggested that legume LCO receptors evolved from a putative ancestral defense-related chitin receptor through the acquisition of two kinase motifs. However, the phylogenetic analysis shows that these domains are actually ancestral, suggesting that this scenario is unlikely. Our study underlines the evolutionary significance of gene duplication and subsequent neofunctionalization in MtLYK3-LjNFR1 genes. We hypothesize that their ancestor was more likely a mycorrhizal LCO receptor, than a defense-related receptor kinase.


Assuntos
Evolução Molecular , Fabaceae/genética , Fabaceae/microbiologia , Duplicação Gênica , Proteínas de Plantas/genética , Rhizobium/genética , Simbiose/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sequência Conservada , Genes Bacterianos/genética , Genes de Plantas/genética , Funções Verossimilhança , Lipopolissacarídeos/genética , Dados de Sequência Molecular , Família Multigênica , Fixação de Nitrogênio/genética , Filogenia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Especificidade da Espécie
6.
Mol Biol Evol ; 29(4): 1199-212, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22114357

RESUMO

The plant domestication process is associated with considerable modifications of plant phenotype. The identification of the genetic basis of this adaptation is of great interest for evolutionary biology. One of the methods used to identify such genes is the detection of signatures of selection. However, domestication is generally associated with major demographic effects. It is therefore crucial to disentangle the effects of demography and selection on diversity. In this study, we investigated selection in a flowering time pathway during domestication of pearl millet. We first used a random set of 20 genes to model pearl millet domestication using approximate Bayesian computation. This analysis showed that a model with exponential growth and wild-cultivated gene flow was well supported by our data set. Under this model, the domestication date of pearl millet is estimated at around 4,800 years ago. We assessed selection in 15 pearl millet DNA sequences homologous to flowering time genes and showed that these genes underwent selection more frequently than expected. We highlighted significant signatures of selection in six pearl millet flowering time genes associated with domestication or improvement of pearl millet. Moreover, higher deviations from neutrality were found for circadian clock-associated genes. Our study provides new insights into the domestication process of pearl millet and shows that a category of genes of the flowering pathway were preferentially selected during pearl millet domestication.


Assuntos
Evolução Molecular , Flores/genética , Genes de Plantas , Pennisetum/genética , Seleção Genética , Agricultura , Teorema de Bayes , Modelos Genéticos
7.
Mol Ecol ; 22(5): 1383-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23294205

RESUMO

Thanks to genome-scale diversity data, present-day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up-to-date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self-fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype-environment correlations and five designed to detect adaptive differentiation (based on F(ST) or similar measures). We show that genotype-environment correlation methods have substantially more power to detect selection than differentiation-based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype-environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Variação Genética , Genética Populacional , Modelos Genéticos , Seleção Genética , Adaptação Fisiológica , Bases de Dados Genéticas , Deriva Genética , Loci Gênicos , Genótipo , Modelos Logísticos
8.
BMC Evol Biol ; 12: 195, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23025552

RESUMO

BACKGROUND: Gene duplications are a molecular mechanism potentially mediating generation of functional novelty. However, the probabilities of maintenance and functional divergence of duplicated genes are shaped by selective pressures acting on gene copies immediately after the duplication event. The ratio of non-synonymous to synonymous substitution rates in protein-coding sequences provides a means to investigate selective pressures based on genic sequences. Three molecular signatures can reveal early stages of functional divergence between gene copies: change in the level of purifying selection between paralogous genes, occurrence of positive selection, and transient relaxed purifying selection following gene duplication. We studied three pairs of genes that are known to be involved in an interaction with symbiotic bacteria and were recently duplicated in the history of the Medicago genus (Fabaceae). We sequenced two pairs of polygalacturonase genes (Pg11-Pg3 and Pg11a-Pg11c) and one pair of auxine transporter-like genes (Lax2-Lax4) in 17 species belonging to the Medicago genus, and sought for molecular signatures of differentiation between copies. RESULTS: Selective histories revealed by these three signatures of molecular differentiation were found to be markedly different between each pair of paralogs. We found sites under positive selection in the Pg11 paralogs while Pg3 has mainly evolved under purifying selection. The most recent paralogs examined Pg11a and Pg11c, are both undergoing positive selection and might be acquiring new functions. Lax2 and Lax4 paralogs are both under strong purifying selection, but still underwent a temporary relaxation of purifying selection immediately after duplication. CONCLUSIONS: This study illustrates the variety of selective pressures undergone by duplicated genes and the effect of age of the duplication. We found that relaxation of selective constraints immediately after duplication might promote adaptive divergence.


Assuntos
Medicago/classificação , Medicago/genética , Seleção Genética , Duplicação Gênica , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Poligalacturonase/genética
9.
Plant Physiol ; 157(4): 2013-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034625

RESUMO

Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes.


Assuntos
Genes de Plantas/genética , Genoma de Planta/genética , Medicago truncatula/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Sinorhizobium/fisiologia , Sequência de Bases , Evolução Biológica , Divisão Celular , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Duplicados/genética , Lotus/genética , Lotus/microbiologia , Lotus/fisiologia , Medicago truncatula/citologia , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Nódulos Radiculares de Plantas/genética , Plântula/citologia , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Análise de Sequência de DNA , Transdução de Sinais , Glycine max/genética , Glycine max/microbiologia , Glycine max/fisiologia , Simbiose/fisiologia
10.
BMC Genet ; 13: 27, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22494792

RESUMO

BACKGROUND: With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. RESULTS: In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. CONCLUSIONS: EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.


Assuntos
Genética Populacional , Genômica , Software , Simulação por Computador
11.
Mol Ecol Resour ; 22(8): 3176-3187, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35753060

RESUMO

Rapid and repeatable polymorphism analyses have become a necessity with the current amount of genomic data that can be collected in many organisms. Traditionally, such analyses are conducted using a variety of tools in combination, often requiring numerous format translation and manipulation. Here, we present a massively updated version of our previous software package egglib, intended to alleviate such costly and error-prone tinkering with the data. egglib has been streamlined into a python package and thoroughly updated and optimized to accommodate modern-day sized dataset. We show the main characteristics of the package making it a tool of choice to perform population genetics analyses. Once the data are imported (whatever their encoding), they can be filtered, edited, analysed and compared to coalescent simulations very easily and efficiently. Furthermore, the list of diversity and polymorphism statistics that can now be calculated has been greatly expanded. The software and its full documentation are available at https://egglib.org/.


Assuntos
Genômica , Software , Genética Populacional , Genoma
12.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919678

RESUMO

The recent availability of genome-wide sequencing techniques has allowed systematic screening for molecular signatures of adaptation, including in nonmodel organisms. Host-pathogen interactions constitute good models due to the strong selective pressures that they entail. We focused on an adaptive event which affected the poplar rust fungus Melampsora larici-populina when it overcame a resistance gene borne by its host, cultivated poplar. Based on 76 virulent and avirulent isolates framing narrowly the estimated date of the adaptive event, we examined the molecular signatures of selection. Using an array of genome scan methods based on different features of nucleotide diversity, we detected a single locus exhibiting a consistent pattern suggestive of a selective sweep in virulent individuals (excess of differentiation between virulent and avirulent samples, linkage disequilibrium, genotype-phenotype statistical association, and long-range haplotypes). Our study pinpoints a single gene and further a single amino acid replacement which may have allowed the adaptive event. Although our samples are nearly contemporary to the selective sweep, it does not seem to have affected genome diversity further than the immediate vicinity of the causal locus, which can be explained by a soft selective sweep (where selection acts on standing variation) and by the impact of recombination in mitigating the impact of selection. Therefore, it seems that properties of the life cycle of M. larici-populina, which entails both high genetic diversity and outbreeding, has facilitated its adaptation.


Assuntos
Basidiomycota , Populus , Genômica , Doenças das Plantas/microbiologia , Populus/genética
13.
BMC Evol Biol ; 11: 229, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806823

RESUMO

BACKGROUND: We studied patterns of molecular adaptation in the wild Mediterranean legume Medicago truncatula. We focused on two phenotypic traits that are not functionally linked: flowering time and perception of symbiotic microbes. Phenology is an important fitness component, especially for annual plants, and many instances of molecular adaptation have been reported for genes involved in flowering pathways. While perception of symbiotic microbes is also integral to adaptation in many plant species, very few reports of molecular adaptation exist for symbiotic genes. Here we used data from 57 individuals and 53 gene fragments to quantify the overall strength of both positive and purifying selection in M. truncatula and asked if footprints of positive selection can be detected at key genes of rhizobia recognition pathways. RESULTS: We examined nucleotide variation among 57 accessions from natural populations in 53 gene fragments: 5 genes involved in nitrogen-fixing bacteria recognition, 11 genes involved in flowering, and 37 genes used as control loci. We detected 1757 polymorphic sites yielding an average nucleotide diversity (pi) of 0.003 per site. Non-synonymous variation is under sizable purifying selection with 90% of amino-acid changing mutations being strongly selected against. Accessions were structured in two groups consistent with geographical origins. Each of these two groups harboured an excess of rare alleles, relative to expectations of a constant-sized population, suggesting recent population expansion. Using coalescent simulations and an approximate Bayesian computation framework we detected several instances of genes departing from selective neutrality within each group and showed that the polymorphism of two nodulation and four flowering genes has probably been shaped by recent positive selection. CONCLUSION: We quantify the intensity of purifying selection in the M. truncatula genome and show that putative footprints of natural selection can be detected at different time scales in both flowering and symbiotic pathways.


Assuntos
Evolução Molecular , Medicago truncatula/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Adaptação Fisiológica , Variação Genética , Genótipo , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Seleção Genética , Simbiose
14.
Evol Appl ; 14(2): 513-523, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664791

RESUMO

Crop varieties carrying qualitative resistance to targeted pathogens lead to strong selection pressure on parasites, often resulting in resistance breakdown. It is well known that qualitative resistance breakdowns modify pathogen population structure but few studies have analyzed the consequences on their quantitative aggressiveness-related traits. The aim of this study was to characterize the evolution of these traits following a resistance breakdown in the poplar rust fungus, Melampsora larici-populina. We based our experiment on three temporal populations sampled just before the breakdown event, immediately after and four years later. First, we quantified phenotypic differences among populations for a set of aggressiveness traits on a universally susceptible cultivar (infection efficiency, latent period, lesion size, mycelium quantity, and sporulation rate) and one morphological trait (mean spore volume). Then, we estimated heritability to establish which traits could be subjected to adaptive evolution and tested for evidence of selection. Our results revealed significant changes in the morphological trait but no variation in aggressiveness traits. By contrast, recent works have demonstrated that quantitative resistance (initially assumed more durable) could be eroded and lead to increased aggressiveness. Hence, this study is one example suggesting that the use of qualitative resistance may be revealed to be less detrimental to long-term sustainable crop production.

15.
Genetics ; 177(4): 2123-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18073426

RESUMO

Symbiotic nitrogen-fixing rhizobia are able to trigger root deformation in their Fabaceae host plants, allowing their intracellular accommodation. They do so by delivering molecules called Nod factors. We analyzed the patterns of nucleotide polymorphism of five genes controlling early Nod factor perception and signaling in the Fabaceae Medicago truncatula to understand the selective forces shaping the evolution of these genes. We used 30 M. truncatula genotypes sampled in a genetically homogeneous region of the species distribution range. We first sequenced 24 independent loci and detected a genomewide departure from the hypothesis of neutrality and demographic equilibrium that suggests a population expansion. These data were used to estimate parameters of a simple demographic model incorporating population expansion. The selective neutrality of genes controlling Nod factor perception was then examined using a combination of two complementary neutrality tests, Tajima's D and Fay and Wu's standardized H. The joint distribution of D and H expected under neutrality was obtained under the fitted population expansion model. Only the gene DMI1, which is expected to regulate the downstream signal, shows a pattern consistent with a putative selective event. In contrast, the receptor-encoding genes NFP and NORK show no significant signatures of selection. Among the genes that we analyzed, only DMI1 should be viewed as a candidate for adaptation in the recent history of M. truncatula.


Assuntos
Genes de Plantas , Genética Populacional , Lipopolissacarídeos/metabolismo , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Transdução de Sinais , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Fixação de Nitrogênio , Análise de Sequência de DNA
16.
BMC Evol Biol ; 7: 210, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17986323

RESUMO

BACKGROUND: The NODULATION RECEPTOR KINASE (NORK) gene encodes a Leucine-Rich Repeat (LRR)-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. RESULTS: We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein) in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. CONCLUSION: Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race) must be tested to explain the adaptive evolution of NORK.


Assuntos
Evolução Molecular , Genes de Plantas/genética , Medicago/genética , Fosfotransferases/genética , Sinorhizobium/fisiologia , Simbiose , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/química , Medicago/enzimologia , Medicago/microbiologia , Dados de Sequência Molecular , Filogenia , Seleção Genética , Especificidade da Espécie
18.
Evolution ; 70(12): 2704-2717, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27757965

RESUMO

Bottom-up evolutionary approaches, including geographically explicit population genomic analyses, have the power to reveal the mechanistic basis of adaptation. Here, we conduct a population genomic analysis in the model legume, Medicago truncatula, to characterize population genetic structure and identify symbiosis-related genes showing evidence of spatially variable selection. Using RAD-seq, we generated over 26,000 SNPs from 191 accessions from within three regions of the native range in Europe. Results from STRUCTURE analysis identify five distinct genetic clusters with divisions that separate east and west regions in the Mediterranean basin. Much of the genetic variation is maintained within sampling sites, and there is evidence for isolation by distance. Extensive linkage disequilibrium was identified, particularly within populations. We conducted genetic outlier analysis with FST -based genome scans and a Bayesian modeling approach (PCAdapt). There were 70 core outlier loci shared between these distinct methods with one clear candidate symbiosis related gene, DMI1. This work sets that stage for functional experiments to determine the important phenotypes that selection has acted upon and complementary efforts in rhizobium populations.


Assuntos
Genoma de Planta , Desequilíbrio de Ligação , Medicago truncatula/genética , Polimorfismo de Nucleotídeo Único , França , Geografia , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Espanha , Simbiose
19.
Ecol Evol ; 6(18): 6625-6632, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27777735

RESUMO

The genetic consequences of range expansions have generally been investigated at wide geographical and temporal scales, long after the colonization event. A unique ecological system enabled us to both monitor the colonization dynamics and decipher the genetic footprints of expansion over a very short time period. Each year an epidemic of the poplar rust (Melampsora larici-populina) expands clonally and linearly along the Durance River, in the Alps. The colonization dynamics observed in 2004 showed two phases with different genetic outcomes. Upstream, fast colonization maintained high genetic diversity. Downstream, the colonization wave progressively faltered, diversity eroded, and differentiation increased, as expected under recurrent founder events. In line with the high dispersal abilities of rust pathogens, we provide evidence for leapfrog dispersal of clones. Our results thus emphasize the importance of colonization dynamics in shaping spatial genetic structure in the face of high gene flow.

20.
Mol Ecol Resour ; 15(5): 1243-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25703414

RESUMO

The Périgord black truffle (Tuber melanosporum Vittad.), considered a gastronomic delicacy worldwide, is an ectomycorrhizal filamentous fungus that is ecologically important in Mediterranean French, Italian and Spanish woodlands. In this study, we developed a novel resource of single nucleotide polymorphisms (SNPs) for T. melanosporum using Illumina high-throughput resequencing. The genome from six T. melanosporum geographical accessions was sequenced to a depth of approximately 20×. These geographical accessions were selected from different populations within the northern and southern regions of the geographical species distribution. Approximately 80% of the reads for each of the six resequenced geographical accessions mapped against the reference T. melanosporum genome assembly, estimating the core genome size of this organism to be approximately 110 Mbp. A total of 442 326 SNPs corresponding to 3540 SNPs/Mbps were identified as being included in all seven genomes. The SNPs occurred more frequently in repeated sequences (85%), although 4501 SNPs were also identified in the coding regions of 2587 genes. Using the ratio of nonsynonymous mutations per nonsynonymous site (pN) to synonymous mutations per synonymous site (pS) and Tajima's D index scanning the whole genome, we were able to identify genomic regions and genes potentially subjected to positive or purifying selection. The SNPs identified represent a valuable resource for future population genetics and genomics studies.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Polimorfismo de Nucleotídeo Único , DNA Fúngico/química , DNA Fúngico/genética , França , Humanos , Itália , Dados de Sequência Molecular , Seleção Genética , Análise de Sequência de DNA , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA