Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Sci Food Agric ; 104(10): 5921-5929, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38450779

RESUMO

BACKGROUND: Microgreens constitute dietary sources of bioactive compounds imparting numerous health benefits and enhancing sensory experience. They can be successfully cultivated in soilless systems where biostimulants can be easily integrated as seed-priming and post-germination agents improving the sustainability of a crop's final production. Compared to an untreated control, three priming agents (a commercial legume-derived protein hydrolysate (A250), a novel protein hydrolysate derived from peanut biomass (H250) and hydropriming (H2O)) were applied to Komatsuna and Mibuna seeds grown as microgreens and compared for their effects on yield parameters, mineral composition, ABTS and FRAP antioxidant capacity, carotenoid concentration and phenolic compounds. RESULTS: Significant effects of the main experimental factors and their interactions were identified on antioxidant capacity. Compared to the control and hydropriming, the highest ABTS and FRAP values were observed in Mibuna with the A250 and H250 treatments, respectively. Additionally, the H250 treatment increased the total concentrations of phenolic acid derivatives and flavonoid derivatives in Mibuna and Komatsuna, in tune with the levels of total flavonoids. Concerning mineral composition, the highest concentrations in both species were those of phosphorus and nitrate. CONCLUSION: These results highlight the potential of select plant-based biostimulants as priming agents to enhance the antioxidant capacity, nutrient content and bioactive compound content, thus further increasing their functional and nutritive quality. In the light of this, the possibility of reducing the application of fertilizers by promoting a green transition for the intensive production of microgreens could subsequently be evaluated. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Valor Nutritivo , Fenóis , Sementes , Antioxidantes/química , Antioxidantes/análise , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fenóis/química , Fenóis/análise , Arachis/química , Flavonoides/análise , Flavonoides/química , Hidrolisados de Proteína/química , Carotenoides/análise , Carotenoides/química , Proteínas de Plantas/metabolismo
2.
J Environ Manage ; 325(Pt A): 116455, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36242975

RESUMO

The in-situ resource utilisation (ISRU), in terms of native rocky materials and astronaut wastes, is crucial in contests of soil-based space-farming. Nevertheless, extra-terrestrial soils are very different from Earth soils, lacking any form of organic carbon and associated macro and micronutrients. In this research, we aimed to study and modify two commercially available Lunar and Martian regolith simulants (LHS-1 from Exolith Lab and MMS-1 from Martian Garden) to make them an adequate medium for plant growth. Lettuce was chosen as reference crop to guide the discussion on the results obtained. To reach this main objective, we added to simulants a commercially available monogastric-based organic manure chosen as a substitute of a possible organic amendment produced onboard. The simulant/manure mixture rates were 100:0, 90:10, 70:30, 50:50; w:w. As expected, an approximately linear increase of total and bioavailable contents of macro (N, S, P, Ca, K, Mg) and micro (Fe, Mn, Cu, Zn) nutrients with increasing manure addition to simulants was observed. On the other hand, the very high pH of manure (pH, 9.02) along with its salinity (EC, 6.7 dS m-1) and sodicity (Na, 5.3 g kg-1), did not correct the already high pH of simulants (very high for LHS-1), but rather raised their soluble salt content and sodium amount on the exchange complex. In addition, an increase of toxic soluble aluminium and heavy elements (Pb, Ni, Cr, V) was observed, mainly in the strongly alkaline lunar simulant/manure mixtures. The addition of an organic source also produced a generalised improvement of water retention and hydraulic conductivity of both regolith simulants, in proportion to the percentage of manure addiction. For both situations, the best mixture ratio was 70:30. In terms of water retained, the LHS-1 mixtures benefited more than the MMS-1 ones by manure addition since water was held more in the "dry" (between -100 and -600 cm of matric potential head) than in the "humid" (between -25 and -100 cm of matric potential head) region of water retention. This would make LHS-1 mixtures more useful for cultivation of lettuce, at least in terms of physico-hydraulic properties. Nevertheless, the overall characterisation of the mixtures unveiled that MMS-1-based substrates can ensure better agronomic performances than LHS-1 ones, mainly due to lower pHs and higher nutrient availability; this divergent fertility was particularly evident at 90:10 simulant/manure rate and tend to be mitigated by increasing the levels of manure.


Assuntos
Esterco , Marte , Solo/química , Meio Ambiente Extraterreno , Lactuca , Água
3.
Planta ; 256(4): 68, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053378

RESUMO

MAIN CONCLUSION: The combination of image-based phenotyping with in-depth anatomical analysis allows for a thorough investigation of plant physiological plasticity in acclimation, which is driven by environmental conditions and mediated by anatomical traits. Understanding the ability of plants to respond to fluctuations in environmental conditions is critical to addressing climate change and unlocking the agricultural potential of crops both indoor and in the field. Recent studies have revealed that the degree of eco-physiological acclimation depends on leaf anatomical traits, which show stress-induced alterations during organogenesis. Indeed, it is still a matter of debate whether plant anatomy is the bottleneck for optimal plant physiology or vice versa. Here, we cultivated 'Salanova' lettuces in a phenotyping chamber under two different vapor pressure deficits (VPDs; low, high) and watering levels (well-watered, low-watered); then, plants underwent short-term changes in VPD. We aimed to combine high-throughput phenotyping with leaf anatomical analysis to evaluate their capability in detecting the early stress signals in lettuces and to highlight the different degrees of plants' eco-physiological acclimation to the change in VPD, as influenced by anatomical traits. The results demonstrate that well-watered plants under low VPD developed a morpho-anatomical structure in terms of mesophyll organization, stomatal and vein density, which more efficiently guided the acclimation to sudden changes in environmental conditions and which was not detected by image-based phenotyping alone. Therefore, we emphasized the need to complement high-throughput phenotyping with anatomical trait analysis to unveil crop acclimation mechanisms and predict possible physiological behaviors after sudden environmental fluctuations due to climate changes.


Assuntos
Aclimatação , Lactuca , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Pressão de Vapor , Água/fisiologia
4.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807371

RESUMO

Fennel (Foeniculum vulgare Mill.) waste contains a broad range of bioactive molecules, including polyphenols, which have poor bioaccessibility during gastrointestinal digestion. This work aimed to investigate the bioaccessibility of total phenolic compounds and the antioxidant capacity during simulated gastrointestinal digestion using two nutraceutical formulations based on non-acid-resistant (NAR) and acid-resistant (AR) capsules containing aqueous-based extracts from fennel waste. Moreover, to obtain a comprehensive investigation of the polyphenolic constituents of the fennel waste extract, a high-resolution mass spectrometry (Q-Orbitrap) analysis was performed. Notably, chlorogenic acids, such as 4-caffeoylquinic acid and 3,4-dicaffeoylquinic acid, were the most detected compounds found in assayed samples (1.949 and 0.490 mg/g, respectively). After in vitro gastrointestinal digestion, the extract contained in AR capsules displayed higher bioaccessibility in both the duodenal and colonic stages (1.96 and 5.19 mg GAE/g, respectively) than NAR capsules (1.72 and 3.50 mg GAE/g, respectively), suggesting that the acidic gastric conditions negatively affected the polyphenol compounds released from the NAR capsules. Therefore, the aqueous extract of fennel waste could be proposed as an innovative and easily available source of dietary polyphenols. Furthermore, the use of an AR capsule could improve the polyphenol bioaccessibility and can be proposed as a nutraceutical formulation.


Assuntos
Antioxidantes/química , Foeniculum , Extratos Vegetais , Polifenóis/química , Suplementos Nutricionais/análise , Digestão , Foeniculum/química , Foeniculum/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
5.
Physiol Plant ; 170(2): 187-201, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32468630

RESUMO

Photoperiodic light quality affects flowering of long day plants, by influencing the phytochrome photoequilibria (PPE) at plant level; however, the most effective light spectrum to promote flowering is still unknown for most of the flower crops. We evaluated the influence of light spectrum of three light sources, with different induced PPE, on photosynthesis, metabolic profiling, plant growth and flowering in two hybrids of Ranunculus asiaticus L., MBO (early flowering) and MDR (medium earliness). Three photoperiodic treatments were compared to natural day length (NL): white fluorescent light (PPE 0.84), light emitting diodes (LEDs) with red:far red (R:FR) light at 3:1 ratio (PPE, 0.84) and LEDs with R:FR light at 1:3 ratio (PPE 0.63). Under natural light, net photosynthesis was higher in MDR than in MBO, while photochemistry was similar in the hybrids. Compared to NL, photoperiodic treatments did not affect net photosynthesis, while they promoted the quantum yield of PSII and reduced the non-photochemical quenching. Under NL, plant growth was greater in MBO, while flowering started earlier in MDR and flowers characteristics were similar in the hybrids. Despite the greater sensitivity of MDR plants in terms of metabolism, photoperiodic lighting improved plant growth and reduced the flowering time only in MBO, with a stronger effect under R:FR 3:1 light. MDR plants were characterized by higher soluble sugars, polyphenols, photosynthetic pigments and proteins, while MBO plants by higher starch and amino acid content. The morphological effects of photoperiodic light quality and the hybrid-specific response should be taken into account to optimize lighting protocols in commercial farms.


Assuntos
Fotossíntese , Ranunculus , Flores , Fotoperíodo , Desenvolvimento Vegetal
6.
Sensors (Basel) ; 20(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486394

RESUMO

Proximal sensors in controlled environment agriculture (CEA) are used to monitor plant growth, yield, and water consumption with non-destructive technologies. Rapid and continuous monitoring of environmental and crop parameters may be used to develop mathematical models to predict crop response to microclimatic changes. Here, we applied the energy cascade model (MEC) on green- and red-leaf butterhead lettuce (Lactuca sativa L. var. capitata). We tooled up the model to describe the changing leaf functional efficiency during the growing period. We validated the model on an independent dataset with two different vapor pressure deficit (VPD) levels, corresponding to nominal (low VPD) and off-nominal (high VPD) conditions. Under low VPD, the modified model accurately predicted the transpiration rate (RMSE = 0.10 Lm-2), edible biomass (RMSE = 6.87 g m-2), net-photosynthesis (rBIAS = 34%), and stomatal conductance (rBIAS = 39%). Under high VPD, the model overestimated photosynthesis and stomatal conductance (rBIAS = 76-68%). This inconsistency is likely due to the empirical nature of the original model, which was designed for nominal conditions. Here, applications of the modified model are discussed, and possible improvements are suggested based on plant morpho-physiological changes occurring in sub-optimal scenarios.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Teóricos , Pressão de Vapor , Água , Ambiente Controlado , Lactuca/crescimento & desenvolvimento , Microclima
7.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260073

RESUMO

Sweet basil (Ocimum basilicum L.) is a highly versatile and globally popular culinary herb, and a rich source of aromatic and bioactive compounds. Particularly for leafy vegetables, nutrient management allows a more efficient and sustainable improvement of crop yield and quality. In this work, we investigated the effects of balanced modulation of the concentration of two antagonist anions (nitrate and chlorine) in basil. Specifically, we evaluated the changes in yield and leaf metabolic profiles in response to four different NO3-:Cl- ratios in two consecutive harvests, using a full factorial design. Our work indicated that the variation of the nitrate-chloride ratio exerts a large effect on both metabolomic profile and yield in basil, which cannot be fully explained only by an anion-anion antagonist outcome. The metabolomic reprogramming involved different biochemical classes of compounds, with distinctive traits as a function of the different nutrient ratios. Such changes involved not only a response to nutrients availability, but also to redox imbalance and oxidative stress. A network of signaling compounds, including NO and phytohormones, underlined the modeling of metabolomic signatures. Our work highlighted the potential and the magnitude of the effect of nutrient solution management in basil and provided an advancement towards understanding the metabolic response to anion antagonism in plants.


Assuntos
Cloro/efeitos adversos , Metabolômica/métodos , Nitratos/efeitos adversos , Ocimum basilicum/crescimento & desenvolvimento , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ocimum basilicum/química , Estresse Oxidativo , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética
8.
J Sci Food Agric ; 99(15): 6962-6972, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31414498

RESUMO

BACKGROUND: Through precise control of the nutrient solution (NS), closed soilless systems enable targeted manipulation of plant secondary metabolites, which constitute health-promoting components of the human daily diet. A nutrient film technique (NFT) system was employed to assess the effect of NS macronutrient-based concentration (full, half-, and quarter-strength corresponding to electrical conductivity (EC) of 1.5, 0.75, and 0.5 dS m-1 ) on the bioactive profile of red and green-pigmented Salanova® butterhead lettuce. RESULTS: Half-strength NS reduced fresh biomass of both cultivars by 14%, whereas quarter-strength NS reduced the fresh biomass of green and red Salanova by 24% and 38%, respectively. However, moderate nutrient stress (half-strength NS) boosted red Salanova total ascorbic acid, chlorogenic, chicoric, caffeoyl-meso-tartaric, total phenolic acids, and anthocyanins concentrations by 266%, 199%, 124%, 251%, 162%, and 380%, respectively compared with the control, full-strength NS. CONCLUSIONS: Nutritional eustress and appropriate cultivar selection are effective means to increase phytochemical content and optimize year-round production of lettuce in closed soilless systems. © 2019 Society of Chemical Industry.


Assuntos
Lactuca/química , Lactuca/metabolismo , Nutrientes/análise , Antocianinas/análise , Antocianinas/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Hidroponia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Fenóis/análise , Fenóis/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Metabolismo Secundário
9.
ScientificWorldJournal ; 2014: 420807, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506068

RESUMO

Mediterranean greenhouses for cultivation of Phalaenopsis orchids reproduce the warm, humid, and shaded environment of tropical underbrush. Heating represents the highest production cost, due to the high thermal requirements and the long unproductive phase of juvenility, in which plants attain the critical size for flowering. Our researches aimed to investigate the effect of plant size, temperature, and light intensity, during the phase of flower induction, on flowering of modern genotypes selected for Mediterranean greenhouses. Three experiments were carried out to compare (i) plant size: reduced size versus size considered optimal for flowering (hybrids "Sogo Yukidian," "Chain Xen Diamond," and "Pinlong"); (ii) temperature: moderate reduction of temperature versus standard thermal regime (hybrid "Premium"); (iii) light intensity: supplemental lighting versus reference light intensity (hybrid "Premium"). The premature exposure of plants to the inductive treatment delayed the beginning of flowering and reduced the flower stem quality, in all the tested hybrids. In "Premium," the lower temperature did not affect flowering earliness and commercial quality of flower stems compared to the standard regime, whereas it promoted stem branching. In the same hybrid, supplemental lighting anticipated flowering and promoted the emission of the second stem and the stem branching, compared to the reference light regime.


Assuntos
Tamanho Corporal/efeitos da radiação , Flores/efeitos da radiação , Luz , Orchidaceae/anatomia & histologia , Orchidaceae/efeitos da radiação , Temperatura , Ritmo Circadiano/efeitos da radiação , Hibridização Genética , Região do Mediterrâneo , Orchidaceae/fisiologia , Fatores de Tempo
10.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475593

RESUMO

Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato (Solanum tuberosum L.) plants on the MMS-1 Mojave Mars regolith simulant, pure (R100) and mixed with green compost at 30% (R70C30), in a pot in a cold glasshouse with fertigation. For comparison purposes, we also grew plants on a fluvial sand, pure (S100) and amended with 30% of compost (S70C30), a volcanic soil (VS) and a red soil (RS). We studied the fertility dynamics in the substrates over time and the tuber nutritional quality. We investigated nutrient bioavailability and fertility indicators in the substrates and the quality of potato tubers. Plants completed the life cycle on R100 and produced scarce but nutritious tubers, despite many critical simulant properties. The compost supply enhanced the MMS-1 chemical/physical fertility and determined a higher tuber yield of better nutritional quality. This study demonstrated that a compost-amended Mars simulant could be a proper substrate to produce food crops in BLSSs, enabling it to provide similar ecosystem services of the studied terrestrial soils.

12.
Food Res Int ; 164: 112374, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737961

RESUMO

Despite the well-known beneficial function of Zn in human health, its deficiency is an increasingly recognized worldwide concern. In this work, we evaluated the agronomic biofortification of two basil (Ocimum basilicum L.) cultivars ('Aroma 2' and 'Eleonora') using nutrient solutions with different Zn concentrations (0, 12.5, 25, 37.5, and 50 µM). We focused on the impact of biofortification on the mineral profile quantified by ICP OES. Compared to the control, biofortification treatments increased Zn concentration by 22.03 % (on average). Consumption of one serving of 50 µM of Zn biofortified basil 'Aroma 2' guarantees an estimated daily intake (EDI) of 275.746 and 91.915 µg day-1 in adults and children, respectively. Furthermore, Zn biofortification positively affected the mineral profile of the leaves. Compared to the control, the B50 dose of Zn (50 µM of Zn) increased the EDI of macro and microelements in adults and children. This aspect highlights how biofortified basil consumption would improve consumers' nutritional status.


Assuntos
Biofortificação , Ocimum basilicum , Humanos , Adulto , Criança , Biofortificação/métodos , Zinco , Minerais , Agricultura
13.
Plants (Basel) ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771571

RESUMO

Basil (Ocimum sp.) is one of the world's most famous culinary fresh herbs, characterized by rapid growth that makes it particularly suitable for hydroponic cultivation. This study aimed to evaluate the adaptability of six types of basil to a closed-loop hydroponic system (floating raft system) and their post-harvest performance. Twenty-three days after transplantation, productivity, morpho-physiological performance, and mineral profile (by ion chromatography) were evaluated. At 3, 6, and 9 days after harvest, the loss of water from the from leaves stored at 10 °C in the dark was evaluated. Although the total fresh production of Thai, Mexican, and Genovese did not differ significantly, the latter provided a higher fresh leaf weight (16.52 g of plant-1) despite a lower leaf number (30.06 n. of plant-1). Nine days after harvest, Thai and Mexican showed the lowest water loss. Although Mexican Purple had the lowest net CO2 assimilation, it accumulated the highest concentration of ascorbic acid (909.41 mg 100 g fw-1).

14.
Plants (Basel) ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765419

RESUMO

Ranunculus asiaticus L. is an ornamental geophyte. In commercial practice, it is mainly propagated by rehydrated tuberous roots. Vernalization before planting is a common practice to overcome the natural dormancy of tuberous roots; however, little is known about the mechanisms underlying the plant's response to low temperatures. We investigated the influence of three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.5 °C for 2 weeks (V2) and for 4 weeks (V4), on plant growth, leaf photosynthesis, flowering, and metabolism in plants of two hybrids, MBO (early flowering, pale orange flower) and MDR (medium earliness, bright orange flower), grown in pots in an unheated greenhouse. We reported the responses observed in the aerial part in a previous article in this journal. In this paper, we show changes in the underground organs in carbohydrate, amino acids, polyphenols, and protein levels throughout the growing cycle in the different plant stages: pre-planting, vegetative growth, and flowering. The metabolic profile revealed that the two hybrids had different responses to the root preparation procedure. In particular, MBO synthesized GABA and alanine after 2 weeks and sucrose after 4 weeks of vernalization. In contrast, MDR was more sensitive to vernalization; in fact, a higher synthesis of polyphenols was observed. However, both hybrids synthesized metabolites that could withstand exposure to low temperatures.

15.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771508

RESUMO

In Ranunculus asiaticus L., vernalization of propagation material is a common practice for the production scheduling of cut flowers, however little is known about the plant physiology and metabolism of this species as affected by cold treatments. We investigated the influence of two hybrids, MBO and MDR, and three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.5 °C for 2 weeks (V2) and for 4 weeks (V4), on plant growth and flowering, leaf photosynthesis, and leaf metabolic profile in plants grown in pot in a cold greenhouse. Net photosynthesis (NP) was higher in MDR than in MBO. In the two genotypes, the NP did not change in V2 and increased in V4 compared to C in MBO, while was unaffected by vernalization in MDR. Quantum yield of PSII electron transport (ΦPSII), linear electron transport rate (ETR) and non-photochemical quenching (NPQ) did not differ in the two hybrids, whereas maximal PSII photochemical efficiency (Fv/Fm) was higher in MBO than in MDR. Fluorescence indexes were unaffected by the preparation procedure, except for ETR, which decreased in V2 compared to C and V4 in MDR. A significant interaction between genotype and preparation procedure was found in plant leaf area, which was reduced only in V4 in MBO, while decreased in both the vernalization procedures in MDR. In Control plants, flowering started in 65 days in MBO and 69 days in MDR. Compared to controls, both the vernalization treatments anticipated flowering in MDR, while they were detrimental or only slightly efficient in promoting flowering in MBO. Vernalization always reduced the quality of flower stems in both the hybrids.

16.
Plants (Basel) ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514243

RESUMO

The success of Space missions and the efficacy of colonizing extraterrestrial environments depends on ensuring adequate nutrition for astronauts and autonomy from terrestrial resources. A balanced diet incorporating premium quality fresh foods, such as microgreens, is essential to the mental and physical well-being of mission crews. To improve the nutritional intake of astronaut meals, two levels of potassium iodide (KI; 4 µM and 8 µM) and an untreated control were assessed for iodine (I) biofortification, and overall nutraceutical profile of four microgreens: tatsoi (Brassica rapa L. subsp. narinosa), coriander (Coriandrum sativum L.), green basil, and purple basil (Ocimum basilicum L.). A dose-dependent increase in I was observed at 8 µM for all species, reaching concentrations of 200.73, 118.17, 93.97, and 82.70 mg kg-1 of dry weight, in tatsoi, coriander, purple basil, and green basil, respectively. Across species, I biofortification slightly reduced fresh yield (-7.98%) while increasing the antioxidant activity (ABTS, FRAP, and DPPH). LC-MS/MS Q extractive orbitrap analysis detected 10 phenolic acids and 23 flavonoids among microgreen species. The total concentration of phenolic acids increased (+28.5%) in purple basil at 8 µM KI, while total flavonoids in coriander increased by 23.22% and 34.46% in response to 4 and 8 µM KI, respectively. Both doses of KI increased the concentration of total polyphenols in all species by an average of 17.45%, compared to the control.

17.
Plants (Basel) ; 12(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987043

RESUMO

Basil crops are appreciated for their distinct flavour and appeal to various cuisines globally. Basil production is mainly implemented in controlled environment agriculture (CEA) systems. Soil-less cultivation (e.g., hydroponic) is optimal for producing basil, while aquaponics is another technique suitable for leafy crops such as basil. Shortening the production chain through efficient cultivation techniques reduces basil production's carbon footprint. While the organoleptic quality of basil demonstrably benefits from successive cuts, no studies have compared the impact of this practice under hydroponic and aquaponic CEA conditions. Hence, the present study evaluated the eco-physiological, nutritional, and productive performance of Genovese basil cv. Sanremo grown in hydroponic and aquaponic systems (combined with tilapia) and harvested consecutively. The two systems showed similar eco-physiological behaviour and photosynthetic capacity, which were on average 2.99 µmol of CO2 m-2 s-1, equal numbers of leaves, and fresh yields of on average 41.69 and 38.38 g, respectively. Aquaponics yielded greater dry biomass (+58%) and dry matter content (+37%), while the nutrient profiles varied between the systems. The number of cuts did not influence yield; however, it improved dry matter partitioning and elicited a differential nutrient uptake. Our results bear practical and scientific relevance by providing useful eco-physiological and productive feedback on basil CEA cultivation. Aquaponics is a promising technique that reduces chemical fertiliser input and increases the overall sustainability of basil production.

18.
Front Plant Sci ; 14: 1210566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636122

RESUMO

Introduction: Long-duration missions in outer Space will require technologies to regenerate environmental resources such as air and water and to produce food while recycling consumables and waste. Plants are considered the most promising biological regenerators to accomplish these functions, due to their complementary relationship with humans. Plant cultivation for Space starts with small plant growth units to produce fresh food to supplement stowed food for astronauts' onboard spacecrafts and orbital platforms. The choice of crops must be based on limiting factors such as time, energy, and volume. Consequently, small, fast-growing crops are needed to grow in microgravity and to provide astronauts with fresh food rich in functional compounds. Microgreens are functional food crops recently valued for their color and flavor enhancing properties, their rich phytonutrient content and short production cycle. Candidate species of microgreens to be harvested and eaten fresh by crew members, belong to the families Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, Amaranthaceae, and Cucurbitaceae. Methods: In this study we developed and applied an algorithm to objectively compare numerous genotypes of microgreens intending to select those with the best productivity and phytonutrient profile for cultivation in Space. The selection process consisted of two subsequent phases. The first selection was based on literature data including 39 genotypes and 25 parameters related to growth, phytonutrients (e.g., tocopherol, phylloquinone, ascorbic acid, polyphenols, lutein, carotenoids, violaxanthin), and mineral elements. Parameters were implemented in a mathematical model with prioritization criteria to generate a ranking list of microgreens. The second phase was based on germination and cultivation tests specifically designed for this study and performed on the six top species resulting from the first ranking list. For the second selection, experimental data on phytonutrients were expressed as metabolite production per day per square meter. Results and discussion: In the final ranking list radish and savoy cabbage resulted with the highest scores based on their productivity and phytonutrient profile. Overall, the algorithm with prioritization criteria allowed us to objectively compare candidate species and obtain a ranking list based on the combination of numerous parameters measured in the different species. This method can be also adapted to new species, parameters, or re-prioritizing the parameters for specific selection purposes.

19.
Front Plant Sci ; 14: 1190945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538067

RESUMO

During long-term manned missions to the Moon or Mars, the integration of astronauts' diet with fresh food rich in functional compounds, like microgreens, could strengthen their physiological defenses against the oxidative stress induced by the exposure to space factors. Therefore, the development of targeted cultivation practices for microgreens in space is mandatory, since the cultivation in small, closed facilities may alter plant anatomy, physiology, and resource utilization with species-specific responses. Here, the combined effect of two vapor pressure deficit levels (VPD: 0.14 and 1.71 kPa) and two light intensities (150 and 300 µmol photons m-2 s-1 PPFD) on two species for microgreen production (Brassica oleracea var. capitata f. sabauda 'Vertus' and Raphanus raphanistrum subsp. sativus 'Saxa'), was tested on biomass production per square meter, morpho-anatomical development, nutritional and nutraceutical properties. Microgreens were grown in fully controlled conditions under air temperature of 18/24°C, on coconut fiber mats, RGB light spectrum and 12 h photoperiod, till they reached the stage of first true leaves. At this stage microgreens were samples, for growth and morpho-anatomical analyses, and to investigate the biochemical composition in terms of ascorbic acid, phenols, anthocyanin, carotenoids, carbohydrates, as well as of anti-nutritional compounds, such as nitrate, sulfate, and phosphate. Major differences in growth were mostly driven by the species with 'Saxa' always presenting the highest fresh and dry weight as well as the highest elongation; however light intensity and VPDs influenced the anatomical development of microgreens, and the accumulation of ascorbic acid, carbohydrates, nitrate, and phosphate. Both 'Saxa' and 'Vertus' at low VPD (LV) and 150 PPFD increased the tissue thickness and synthetized high ß-carotene and photosynthetic pigments. Moreover, 'Vertus' LV 150, produced the highest content of ascorbate, fundamental for nutritional properties in space environment. The differences among the treatments and their interaction suggested a relevant difference in resource use efficiency. In the light of the above, microgreens can be considered suitable for cultivation in limited-volume growth modules directly onboard, provided that all the environmental factors are combined and modulated according to the species requirements to enhance their growth and biomass production, and to achieve specific nutritional traits.

20.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299145

RESUMO

Basil (Ocimum basilicum L.) is among the most widely used aromatic plants of Lamiaceae, often grown in areas where salinity is an adverse factor. Most studies on the effect of salinity on basil focused on the influence of salt stress on productive traits, while few reported on how it affects the phytochemical composition and the aroma profile. Three basil cultivars (Dark Opal, Italiano Classico, and Purple Ruffles) were grown hydroponically for 34 days with two nutrient solutions that differed in NaCl concentration [no NaCl (Control) and 60 mM NaCl]. Yield, secondary metabolite concentration (ß-carotene and lutein), antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reduction antioxidant power (FRAP)], and aroma profile based on composition of volatile organic compounds (VOCs) were appraised in response to salinity applications. Salt stress significantly reduced fresh yield in Italiano Classico and Dark Opal by 43.34 and 31.69%, respectively, while no effect was observed in Purple Ruffles. Furthermore, the salt-stress treatment increased ß-carotene and lutein concentrations, DPPH, and FRAP activities, and the total nitrogen content of the latter cultivar. CG-MS analysis revealed significant differences in VOCs composition of the basil cultivars, with Italiano Classico and Dark Opal characterized by the predominance of linalool (average 37.52%), which, however, was negatively affected by salinity. In Purple Ruffles, the predominant VOC compound, estragole (79.50%), was not affected by the deleterious effects of NaCl-induced stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA