Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Immunol ; 20(8): 1012-1022, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263276

RESUMO

The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the ß-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.


Assuntos
Células Matadoras Naturais/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula , Dexametasona/farmacologia , Humanos , Interleucina-4/metabolismo , Ativação Linfocitária/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Metástase Neoplásica/prevenção & controle , Neoplasias/patologia
2.
Immunity ; 52(5): 856-871.e8, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32289253

RESUMO

Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.


Assuntos
Armadilhas Extracelulares/metabolismo , Neoplasias Experimentais/terapia , Receptores de Quimiocinas/agonistas , Receptores de Interleucina-8A/agonistas , Receptores de Interleucina-8B/agonistas , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Células HT29 , Humanos , Microscopia Intravital/métodos , Células Matadoras Naturais/imunologia , Ligantes , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-8A/imunologia , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Linfócitos T Citotóxicos/imunologia
3.
Br J Cancer ; 128(2): 331-341, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385556

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with few therapeutic options available. Despite immunotherapy has revolutionised cancer treatment, the results obtained in PDAC are still disappointing. Emerging evidence suggests that chemokines/CXCRs-axis plays a pivotal role in immune tumour microenvironment modulation, which may influence immunotherapy responsiveness. Here, we evaluated the effectiveness of CXCR1/2 inhibitor ladarixin, alone or in combination with anti-PD-1, against immunosuppression in PDAC. METHODS: A set of preclinical models was obtained by engrafting mouse PDAC-derived cells into syngeneic immune-competent mice, as well as by orthotopically transplanting patient-derived PDAC tumour into human immune-system-reconstituted (HIR) mice (HuCD34-NSG-mice). Tumour-bearing mice were randomly assigned to receive vehicles, ladarixin, anti-PD-1 or drugs combination. RESULTS: CXCR1/2 inhibition by ladarixin reverted in vitro tumour-mediated M2 macrophages polarisation and migration. Ladarixin as single agent reduced tumour burden in cancer-derived graft (CDG) models with high-immunogenic potential and increased the efficacy of ICI in non-immunogenic CDG-resistant models. In a HIR mouse model bearing the immunogenic subtype of human PDAC, ladarixin showed high efficacy increasing the antitumor effect of anti-PD-1. CONCLUSION: Ladarixin in combination with anti-PD-1 might represent an extremely effective approach for the treatment of immunotherapy refractory PDAC, allowing pro-tumoral to immune-permissive microenvironment conversion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Carga Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Blood ; 119(2): 411-21, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22067385

RESUMO

In response to microenvironmental signals, macrophages undergo different activation, including the "classic" proinflammatory phenotype (also called M1), the "alternative" activation induced by the IL-4/IL-13 trigger, and the related but distinct heterogeneous M2 polarization associated with the anti-inflammatory profile. The latter is induced by several stimuli, including IL-10 and TGF-ß. Macrophage-polarized activation has profound effects on immune and inflammatory responses and in tumor biology, but information on the underlying molecular pathways is scarce. In the present study, we report that alternative polarization of macrophages requires the transcription factor c-MYC. In macrophages, IL-4 and different stimuli sustaining M2-like polarization induce c-MYC expression and its translocation to the nucleus. c-MYC controls the induction of a subset (45%) of genes associated with alternative activation. ChIP assays indicate that c-MYC directly regulates some genes associated with alternative activation, including SCARB1, ALOX15, and MRC1, whereas others, including CD209, are indirectly regulated by c-MYC. c-MYC up-regulates the IL-4 signaling mediators signal transducer and activator of transcription-6 and peroxisome proliferator-activated receptorγ, is also expressed in tumor-associated macrophages, and its inhibition blocks the expression of protumoral genes including VEGF, MMP9, HIF-1α, and TGF-ß. We conclude that c-MYC is a key player in alternative macrophage activation, and is therefore a potential therapeutic target in pathologies related to these cells, including tumors.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-4/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , PPAR gama/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais
5.
J Immunol ; 188(8): 4081-92, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442441

RESUMO

The axon guidance cues semaphorins (Semas) and their receptors plexins have been shown to regulate both physiological and pathological angiogenesis. Sema4A plays an important role in the immune system by inducing T cell activation, but to date, the role of Sema4A in regulating the function of macrophages during the angiogenic and inflammatory processes remains unclear. In this study, we show that macrophage activation by TLR ligands LPS and polyinosinic-polycytidylic acid induced a time-dependent increase of Sema4A and its receptors PlexinB2 and PlexinD1. Moreover, in a thioglycollate-induced peritonitis mouse model, Sema4A was detected in circulating Ly6C(high) inflammatory monocytes and peritoneal macrophages. Acting via PlexinD1, exogenous Sema4A strongly increased macrophage migration. Of note, Sema4A-activated PlexinD1 enhanced the expression of vascular endothelial growth factor-A, but not of inflammatory chemokines. Sema4A-stimulated macrophages were able to activate vascular endothelial growth factor receptor-2 and the PI3K/serine/threonine kinase Akt pathway in endothelial cells and to sustain their migration and in vivo angiogenesis. Remarkably, in an in vivo cardiac ischemia/reperfusion mouse model, Sema4A was highly expressed in macrophages recruited at the injured area. We conclude that Sema4A activates a specialized and restricted genetic program in macrophages able to sustain angiogenesis and participates in their recruitment and activation in inflammatory injuries.


Assuntos
Macrófagos Peritoneais/imunologia , Neovascularização Fisiológica , Semaforinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Movimento Celular , Quimiocinas/biossíntese , Quimiocinas/imunologia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos Peritoneais/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/patologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Semaforinas/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Infect Dis Ther ; 12(10): 2437-2456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798468

RESUMO

INTRODUCTION: Polymorphonuclear cell influx into the interstitial and bronchoalveolar spaces is a cardinal feature of severe coronavirus disease 2019 (COVID-19), principally mediated by interleukin-8 (IL-8). We sought to determine whether reparixin, a novel IL-8 pathway inhibitor, could reduce disease progression in patients hospitalized with severe COVID-19 pneumonia. METHODS: In this Phase 3, randomized, double-blind, placebo-controlled, multicenter study, hospitalized adult patients with severe COVID-19 pneumonia were randomized 2:1 to receive oral reparixin 1200 mg three times daily or placebo for up to 21 days or until hospital discharge. The primary endpoint was the proportion of patients alive and free of respiratory failure at Day 28, with key secondary endpoints being the proportion of patients free of respiratory failure at Day 60, incidence of intensive care unit (ICU) admission by Day 28 and time to recovery by Day 28. RESULTS: Of 279 patients randomized, 182 received at least one dose of reparixin and 88 received placebo. The proportion of patients alive and free of respiratory failure at Day 28 was similar in the two groups {83.5% versus 80.7%; odds ratio 1.63 [95% confidence interval (CI) 0.75, 3.51]; p = 0.216}. There were no statistically significant differences in the key secondary endpoints, but a numerically higher proportion of patients in the reparixin group were alive and free of respiratory failure at Day 60 (88.7% versus 84.6%; p = 0.195), fewer required ICU admissions by Day 28 (15.8% versus 21.7%; p = 0.168), and a higher proportion recovered by Day 28 compared with placebo (81.6% versus 74.9%; p = 0.167). Fewer patients experienced adverse events with reparixin than placebo (45.6% versus 54.5%), most mild or moderate intensity and not related to study treatment. CONCLUSIONS: This trial did not meet the primary efficacy endpoints, yet reparixin showed a trend toward limiting disease progression as an add-on therapy in COVID-19 severe pneumonia and was well tolerated. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04878055, EudraCT: 2020-005919-51.

7.
Infect Dis Ther ; 11(4): 1559-1574, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618953

RESUMO

INTRODUCTION: Acute lung injury and acute respiratory distress syndrome are common complications in patients with coronavirus disease 2019 (COVID-19). Poor outcomes in patients with COVID-19 are associated with cytokine release syndrome. Binding of interleukin-8 (CXCL8/IL-8) to its chemokine receptors, CXCR1/2, may mediate this inflammatory process. The aim of this clinical trial was to determine if CXCR1/2 blockade with reparixin can improve clinical outcomes in hospitalized patients with severe COVID-19 pneumonia. The dose and safety of reparixin have been investigated in clinical trials of patients with metastatic breast cancer. METHODS: This was a phase 2, open-label, multicenter, randomized study in hospitalized adult patients with severe COVID-19 pneumonia from May 5, 2020 until November 27, 2020. Patients were randomized 2:1 to receive 1200 mg reparixin orally three times daily or standard of care (SOC) for up to 21 days. The primary endpoint was defined as a composite of clinical events: use of supplemental oxygen, need for mechanical ventilation, intensive care unit admission, and/or use of rescue medication. RESULTS: Fifty-five patients were enrolled between reparixin (n = 36) and SOC (n = 19). The rate of clinical events was statistically significantly lower in the reparixin group compared with the SOC group (16.7% [95% CI 6.4-32.8%] vs. 42.1% [95% CI 20.3-66.5%], P = 0.02). The sensitivity analysis based on the Cox regression model provided an adjusted hazard ratio of 0.33 with statistical significance lower than 0.05 (95% CI 0.11-0.99; P = 0.047). Reparixin treatment appeared to be well tolerated. CONCLUSION: In patients with severe COVID-19, reparixin led to an improvement in clinical outcomes when compared with the SOC. A larger phase 3 clinical study is needed to confirm these results. TRIAL REGISTRATION: EudraCT identifier, 2020-001645-40; registered May 6, 2020 (retrospectively registered), and clinicaltrials.gov (NCT04794803) on March 8, 2021.

8.
EClinicalMedicine ; 48: 101450, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35582123

RESUMO

Background: Current available therapeutic options for Coronavirus Disease-2019 (COVID-19) are primarily focused on treating hospitalized patients, and there is a lack of oral therapeutic options to treat mild to moderate outpatient COVID-19 and prevent clinical progression. Raloxifene was found as a promising molecule to treat COVID-19 due to its activity to modulate the replication of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and act as an immunomodulator to decrease proinflammatory cytokines. Methods: This was a phase 2 multicenter, randomized, placebo-controlled trial to evaluate the efficacy and safety of raloxifene in adult patients with mild to moderate COVID-19 between October 2020 to June 2021 in five centers located in Italy. This was a planned 2/3 adaptive study, but due to operational difficulties, the study was discontinued during the phase 2 study segment. Participants were randomized 1:1:1 to receive oral placebo, raloxifene 60 mg, or raloxifene 120 mg by self-administration for a maximum of two weeks. The primary outcomes were the proportion of patients with undetectable SARS-CoV-2 via nasopharyngeal swabs at day 7 and the proportion of patients who did not require supplemental oxygen therapy or mechanical ventilation on day 14. Safety was assessed. The trial is registered (EudraCT 2021-002,476-39, and ClinicalTrials.gov: NCT05172050). Findings: A total of 68 participants were enrolled and randomized to placebo (n = 21), raloxifene 60 mg (n = 24), and raloxifene 120 mg (n = 23). The proportion of participants with undetectable SARS-CoV-2 after seven days of treatment with raloxifene 60 mg [36.8%, 7/19 vs. 0.0%, 0/14] and 120 mg [22.2%, 4/18 vs. 0.0%, 0/14] was better compared to placebo, [risk difference (RD) = 0·37 (95% C.I.:0·09-0·59)] and [RD = 0·22 (95% C.I.: -0·03-0·45)], respectively. There was no evidence of effect for requirement of supplemental oxygen and/or mechanical ventilation with effects for raloxifene 60 mg and raloxifene 120 mg over placebo, [RD = 0·09 (95% C.I.: -0·22-0·37)], and [RD = 0·03 (95% C.I.: -0·28-0·33)], respectively. Raloxifene was well tolerated at both doses, and there was no evidence of any difference in the occurrence of serious adverse events. Interpretation: Raloxifene showed evidence of effect in the primary virologic endpoint in the treatment of early mild to moderate COVID-19 patients shortening the time of viral shedding. The safety profile was consistent with that reported for other indications. Raloxifene may represent a promising pharmacological option to prevent or mitigate COVID-19 disease progression. Funding: The study was funded by Dompé Farmaceutici SpA and supported by the funds from the European Commission - Health and Consumers Directorate General, for the Action under the Emergency Support Instrument- Grant to support clinical testing of repurposed medicines to treat SARS-COV-2 patients (PPPA-ESI-CTRM-2020-SI2.837140), and by the COVID-2020-12,371,675 Ricerca finalizzata and line 1 Ricerca Corrente COVID both funded by Italian Ministry of Health.

9.
Eur J Immunol ; 40(3): 824-35, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20039303

RESUMO

Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions, mimicked by the combined action of LPS and IFN-gamma (M1 polarization). However, macrophages can undergo an alternative type of activation stimulated by Th2 cytokines, and acquire a role in cell growth and tissue repair control (M2 polarization). We characterized the expression of genes related to iron homeostasis in fully differentiated unpolarized (M0), M1 and M2 human macrophages. The molecular signature of the M1 macrophages showed changes in gene expression (ferroportin repression and H ferritin induction) that favour iron sequestration in the reticuloendothelial system, a hallmark of inflammatory disorders, whereas the M2 macrophages had an expression profile (ferroportin upregulation and the downregulation of H ferritin and heme oxygenase) that enhanced iron release. The conditioned media from M2 macrophages promoted cell proliferation more efficiently than those of M1 cells and the effect was blunted by iron chelation. The role of ferroportin-mediated iron release was demonstrated by the absence of differences from the media of macrophages of a patient with loss of function ferroportin mutation. The distinct regulation of iron homeostasis in M2 macrophages provides insights into their role under pathophysiological conditions.


Assuntos
Homeostase/fisiologia , Ferro/metabolismo , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Adulto , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Oncotarget ; 8(22): 35946-35961, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28415590

RESUMO

BACKGROUND: Expression of IL-8 and its receptors CXCR1 and CXCR2 is a common occurrence in human epithelial thyroid cancer (TC). In human TC samples, IL-8 expression is associated with tumor progression. IL-8 enhances proliferation, survival, motility, and leads to the maintenance of stemness features and tumor-initiating ability of TC cells. Here, we studied the effects of Reparixin (formerly Repertaxin), a small molecular weight CXCR1 and CXCR2 inhibitor, on the malignant phenotype of various TC cell lines. RESULTS: Reparixin impaired the viability of epithelial thyroid cancerous cells, but not that of the non-malignant counterpart. Reparixin treatment significantly decreased TC cell survival, proliferation, Epithelial-to-Mesenchymal Transition (EMT) and stemness. CXCR1 and CXCR2 silencing abolished these effects. Reparixin sensitized TC cells to Docetaxel and Doxorubicin in culture. Used as single agent, Reparixin significantly inhibited TC cell tumorigenicity in immunodeficient mice. Finally, Reparixin potentiated the effects of Docetaxel on TC cell xenotransplants in mice. MATERIALS AND METHODS: We assessed the effects of Reparixin on TC cell viability (by growth curves, BrdU incorporation, TUNEL assay), EMT (by RT-PCR, Flow Cytometry, Migration assays), stemness (by RT-PCR, Flow Cytometry, sphere-formation and self-renewal), and tumorigenicity (by xenotransplantation in nude mice). CONCLUSIONS: The present study suggests that Reparixin, both alone and in combination with classic chemotherapics, represents a novel potential therapeutic strategy for aggressive forms of TC.


Assuntos
Antineoplásicos/farmacologia , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Ratos , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncotarget ; 8(9): 14428-14442, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28129639

RESUMO

CXCR1 and CXCR2 chemokine receptors and their ligands (CXCL1/2/3/7/8) play an important role in tumor progression. Tested to date CXCR1/2 antagonists and chemokine-targeted antibodies were reported to affect malignant cells in vitro and in animal models. Yet, redundancy of chemotactic signals and toxicity hinder further clinical development of these approaches. In this pre-clinical study we investigated the capacity of a novel small molecule dual CXCR1/2 inhibitor, Ladarixin (LDX), to attenuate progression of experimental human melanomas. Our data showed that LDX-mediated inhibition of CXCR1/2 abrogated motility and induced apoptosis in cultured cutaneous and uveal melanoma cells and xenografts independently of the molecular defects associated with the malignant phenotype. These effects were mediated by the inhibition of AKT and NF-kB signaling pathways. Moreover, systemic treatment of melanoma-bearing mice with LDX also polarized intratumoral macrophages to M1 phenotype, abrogated intratumoral de novo angiogenesis and inhibited melanoma self-renewal. Collectively, these studies outlined the pre-requisites of the successful CXCR1/2 inhibition on malignant cells and demonstrated multifactorial effects of Ladarixin on cutaneous and uveal melanomas, suggesting therapeutic utility of LDX in treatment of various melanoma types.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Sulfonamidas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiotaxia , Humanos , Interleucina-8/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , NF-kappa B , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 22(15): 3924-36, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26957562

RESUMO

PURPOSE: Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes. EXPERIMENTAL DESIGN: MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures. RESULTS: IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset. CONCLUSIONS: IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control. Clin Cancer Res; 22(15); 3924-36. ©2016 AACR.


Assuntos
Quimiotaxia de Leucócito/imunologia , Armadilhas Extracelulares/imunologia , Interleucina-8/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/imunologia , Animais , Biomarcadores , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Interleucina-8/farmacologia , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Sulfonamidas/farmacologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Oncotarget ; 6(41): 43375-94, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26517518

RESUMO

In breast cancer it has been proposed that the presence of cancer stem cells may drive tumor initiation, progression and recurrences. IL-8, up-regulated in breast cancer, and associated with poor prognosis, increases CSC self-renewal in cell line models. It signals via two cell surface receptors, CXCR1 and CXCR2. Recently, the IL-8/CXCR1 axis was proposed as an attractive pathway for the design of specific therapies against breast cancer stem cells. Reparixin, a powerful CXCR1 inhibitor, was effective in reducing in vivo the tumour-initiating population in several NOD/SCID mice breast cancer models, showing that the selective targeting of CXCR1 and the combination of reparixin and docetaxel resulted in a concomitant reduction of the bulk tumour mass and CSC population. The available data indicate that IL-8, expressed by tumour cells and induced by chemotherapeutic treatment, is a key regulator of the survival and self-renewal of the population of CXCR1-expressing CSC. Consequently, this investigation on the mechanism of action of the reparixin/paclitaxel combination, was based on the observation that reparixin treatment contained the formation of metastases in several experimental models. However, specific data on the formation of breast cancer brain metastases, which carry remarkable morbidity and mortality to a substantial proportion of advanced breast cancer patients, have not been generated. The obtained data indicate a beneficial use of the drug combination reparixin and paclitaxel to counteract brain tumour metastasis due to CSC, probably due to the combined effects of the two drugs, the pro-apoptotic action of paclitaxel and the cytostatic and anti-migratory effects of reparixin.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/patologia , Receptores de Interleucina-8A/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Immunobiology ; 216(11): 1172-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21802768

RESUMO

Atherosclerosis and associated cardiovascular disease are the leading causes of mortality in developed countries and the World Health Organization has estimated that by 2020 these disorders will be the main sanitary and socio-economic problem world-wide due in part to the progressive aging of our societies. Atherosclerosis is a complex chronic inflammatory process triggered and perpetuated by cardiovascular risk factors which cause endothelial dysfunction and leukocyte infiltration within the subendothelial space in the artery wall. In this review, we summarize the mechanisms that govern the recruitment of circulating monocytes into the incipient atherosclerotic lesion and their differentiation into macrophages. Moreover, we discuss current knowledge on macrophage polarization, a phenomenon of increasing interest given recent work suggesting that different stages in the progression of atherosclerosis are associated with the presence of distinct macrophage subtypes. Understanding the molecular mechanisms that orchestrate macrophage polarization and the precise role of distinct macrophage subsets should provide a basis for novel treatment strategies to limit the progression of atherosclerosis.


Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Movimento Celular/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Artérias/patologia , Aterosclerose/complicações , Aterosclerose/patologia , Diferenciação Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Progressão da Doença , Humanos , Inflamação/complicações , Inflamação/patologia , Macrófagos/classificação , Macrófagos/citologia , Camundongos , Monócitos/citologia , Infiltração de Neutrófilos , Fatores de Risco
15.
J Neuroimmunol ; 230(1-2): 74-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20926142

RESUMO

We investigated the expression of the partially duplicated α7 nAChR subunit gene in three monocytic cell lines: THP-1, U937 and Mono-Mac-6. Qualitative PCR revealed the presence of the classic α7 gene in these lineages, but real-time PCR showed the exclusive expression of α7dup. Both mRNA and protein levels were reduced in THP-1 upon LPS challenge, and it was found that transcriptional down-regulation was mediated by a direct mechanism dependent on NF-κB as its specific inhibitor parthenolide prevented the reduction in the α7dup transcript. Such precise regulation suggests that α7dup may specifically participate in the inflammatory response of the innate immune system.


Assuntos
Regulação da Expressão Gênica/imunologia , Inflamação/genética , Monócitos/imunologia , Receptores Nicotínicos/biossíntese , Linhagem Celular , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Genes Duplicados , Humanos , Immunoblotting , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Monócitos/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Receptores Nicotínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA