Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 39(1): 19-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22208739

RESUMO

Per- and poly-fluorinated compounds (PFCs), which include perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs) and various precursors, are used in a wide variety of industrial, commercial and domestic products. This includes aqueous film forming foam (AFFF), which is used by military and commercial airports as fire suppressants. In a preliminary assessment prior to this study, very high concentrations (>1 ppm wet weight) of the PFSA, perfluorooctane sulfonate (PFOS), were discovered in the plasma of snapping turtles (Chelydra serpentina) collected in 2008 from Lake Niapenco in southern Ontario, Canada. We presently report on a suite of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, several PFC precursors (e.g. perfluorooctane sulfonamide, PFOSA), and a cyclic perfluorinated acid used in aircraft hydraulic fluid, perfluoroethylcyclohexane sulfonate (PFECHS) in surface water from the Welland River and Lake Niapenco, downstream of the John C. Munro International Airport, Hamilton, Ontario, Canada. Amphipods, shrimp, and water were sampled from the Welland River and Lake Niapenco, as well as local references. The same suite of PFCs in turtle plasma from Lake Niapenco was compared to those from other southern Ontario sites. PFOS dominated the sum PFCs in all substrates (e.g., >99% in plasma of turtles downstream the Hamilton Airport, and 72.1 to 94.1% at all other sites). PFOS averaged 2223(±247.1SE) ng/g in turtle plasma from Lake Niapenco, and ranged from 9.0 to 171.4 elsewhere. Mean PFOS in amphipods and in water were 518.1(±83.8)ng/g and 130.3(±43.6) ng/L downstream of the airport, and 19.1(±2.7) ng/g and 6.8(±0.5) ng/L at reference sites, respectively. Concentrations of selected PFCs declined with distance downstream from the airport. Although there was no known spill event or publicly reported use of AFFF associated with a fire event at the Hamilton airport, the airport is a likely major source of PFC contamination in the Welland River.


Assuntos
Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Água Doce/química , Poluentes Químicos da Água/análise , Aeroportos , Alcanossulfonatos/análise , Alcanossulfonatos/metabolismo , Ácidos Alcanossulfônicos/metabolismo , Anfípodes/metabolismo , Animais , Biota , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/metabolismo , Cicloexanos , Monitoramento Ambiental , Fluorocarbonos/metabolismo , Lagos/química , Ontário , Rios/química , Poluentes Químicos da Água/metabolismo
2.
J Biol Chem ; 254(20): 10237-42, 1979 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-385598

RESUMO

This study is an attempt to relate in vivo use of the 6-phosphogluconate dehydrogenase reaction in Escherichia coli with the characteristics of the enzyme determined in vitro. 1) The enzyme was obtained pure by affinity chromatography and kinetically characterized; as already known, ATP and fructose-1,6-P2 were inhibitors. 2) A series of isogenic strains were made in which in vivo use of thereaction might differ, e.g. a wild type strain versus a mutant lacking 6-phosphogluconate dehydrase, as grown on gluconate; a phosphoglucose isomerase mutant grown on glucose or glycerol. 3) The in vivo rate of use of the 6-phosphogluconate dehydrogenase reaction was determined from measurements of growth rate and yield and from the specific activity of alanine after growth in 1-14C-labeled substrates. 4) The intracellular concentrations of 6-phosphogluconate, NADP+, fructose-1,6-P2, and ATP were measured for the strains in growth on several carbon sources. 5) The metabolite concentrations were used for assay of the enzyme in vitro. The results allow one to calculate how fast the reaction would function in vivo if ATP and fructose-1,6-P2 were its important effectors and if the in vitro assay conditions apply in vivo. The predicted in vivo rates ranged down to as low as one-tenth of the actual rates, and, accordingly, one cannot yet draw firm conclusions about how the reaction is actually controlled in vivo.


Assuntos
Escherichia coli/enzimologia , Fosfogluconato Desidrogenase/metabolismo , Trifosfato de Adenosina/farmacologia , Escherichia coli/crescimento & desenvolvimento , Frutosedifosfatos/farmacologia , Genótipo , Cinética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA