Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 67(3): 423-437, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719482

RESUMO

Leptospirosis is a zoonosis that has been linked to hydrometeorological variability. Hydrometeorological averages and extremes have been used before as drivers in the statistical prediction of disease. However, their importance and predictive capacity are still little known. In this study, the use of a random forest classifier was explored to analyze the relative importance of hydrometeorological indices in developing the leptospirosis model and to evaluate the performance of models based on the type of indices used, using case data from three districts in Kelantan, Malaysia, that experience annual monsoonal rainfall and flooding. First, hydrometeorological data including rainfall, streamflow, water level, relative humidity, and temperature were transformed into 164 weekly average and extreme indices in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). Then, weekly case occurrences were classified into binary classes "high" and "low" based on an average threshold. Seventeen models based on "average," "extreme," and "mixed" indices were trained by optimizing the feature subsets based on the model computed mean decrease Gini (MDG) scores. The variable importance was assessed through cross-correlation analysis and the MDG score. The average and extreme models showed similar prediction accuracy ranges (61.5-76.1% and 72.3-77.0%) while the mixed models showed an improvement (71.7-82.6% prediction accuracy). An extreme model was the most sensitive while an average model was the most specific. The time lag associated with the driving indices agreed with the seasonality of the monsoon. The rainfall variable (extreme) was the most important in classifying the leptospirosis occurrence while streamflow was the least important despite showing higher correlations with leptospirosis.


Assuntos
Condução de Veículo , Leptospirose , Humanos , Algoritmo Florestas Aleatórias , Leptospirose/epidemiologia , Temperatura , Estações do Ano
2.
Science ; 383(6686): 946-949, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422142

RESUMO

Conventional supply-side approaches overlook potential benefits.

3.
Sci Total Environ ; 824: 153673, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35131248

RESUMO

Natural capital plays a central role in urban functioning, reducing flooding, mitigating urban heat island effects, reducing air pollution, and improving urban biodiversity through provision of habitat space. There is also evidence on the role played by blue and green space in improving physical and mental health, reducing the burden on the health care service. Yet from an urban planning and development view, natural capital may be considered a nice to have, but not essential element of urban design; taking up valuable space which could otherwise be used for traditional built environment uses. While urban natural capital is largely recognised as a positive element, its benefits are difficult to measure both in space and time, making its inclusion in urban (re)development difficult to justify. Here, using a London case study and information provided by key stakeholders, we present a system dynamics (SD) modelling framework to assess the natural capital performance of development and aid design evaluation. A headline indicator: Natural Space Performance, is used to evaluate the capacity of natural space to provide ecosystem services, providing a semi-quantitative measure of system wide impacts of change within a combined natural, built and social system. We demonstrate the capacity of the model to explore how combined or individual changes in development design can affect natural capital and the provision of ecosystem services, for example, biodiversity or flood risk. By evaluating natural capital and ecosystem services over time, greater justification for their inclusion in planning and development can be derived, providing support for increased blue and green space within cities, improving urban sustainability and enhancing quality of life. Furthermore, the application of a SD approach captures key interactions between variables over time, showing system evolution while highlighting intervention opportunities.


Assuntos
Ecossistema , Reforma Urbana , Cidades , Temperatura Alta , Londres , Qualidade de Vida , Crescimento Sustentável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA