Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36884370

RESUMO

The genus Rosenbergiella is one of the most frequent bacterial inhabitants of flowers and a usual member of the insect microbiota worldwide. To date, there is only one publicly available Rosenbergiella genome, corresponding to the type strain of Rosenbergiella nectarea (8N4T), which precludes a detailed analysis of intra-genus phylogenetic relationships. In this study, we obtained draft genomes of the type strains of the other Rosenbergiella species validly published to date (R. australiborealis, R. collisarenosi and R. epipactidis) and 23 additional isolates of flower and insect origin. Isolate S61T, retrieved from the nectar of an Antirrhinum sp. flower collected in southern Spain, displayed low average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values when compared with other Rosenbergiella members (≤86.5 and ≤29.8 %, respectively). Similarly, isolate JB07T, which was obtained from the floral nectar of Metrosideros polymorpha plants in Hawaii (USA) had ≤95.7 % ANI and ≤64.1 % isDDH with other Rosenbergiella isolates. Therefore, our results support the description of two new Rosenbergiella species for which we propose the names Rosenbergiella gaditana sp. nov. (type strain: S61T=NCCB 100789T=DSM 111181T) and Rosenbergiella metrosideri sp. nov. (JB07T=NCCB 100888T=LMG 32616T). Additionally, some R. epipactidis and R. nectarea isolates showed isDDH values<79 % with other conspecific isolates, which suggests that these species include subspecies for which we propose the names Rosenbergiella epipactidis subsp. epipactidis subsp. nov. (S256T=CECT 8502T=LMG 27956T), Rosenbergiella epipactidis subsp. californiensis subsp. nov. (FR72T=NCCB 100898T=LMG 32786T), Rosenbergiella epipactidis subsp. japonicus subsp. nov. (K24T=NCCB 100924T=LMG 32785T), Rosenbergiella nectarea subsp. nectarea subsp. nov. (8N4T = DSM 24150T = LMG 26121T) and Rosenbergiella nectarea subsp. apis subsp. nov. (B1AT=NCCB 100810T= DSM 111763T), respectively. Finally, we present the first phylogenomic analysis of the genus Rosenbergiella and update the formal description of the species R. australiborealis, R. collisarenosi, R. epipactidis and R. nectarea based on new genomic and phenotypic information.


Assuntos
Ácidos Graxos , Néctar de Plantas , Abelhas , Animais , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Insetos
2.
Microb Ecol ; 86(1): 377-391, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35930073

RESUMO

The floral nectar of angiosperms harbors a variety of microorganisms that depend predominantly on animal visitors for their dispersal. Although some members of the genus Acinetobacter and all currently known species of Rosenbergiella are thought to be adapted to thrive in nectar, there is limited information about the response of these bacteria to variation in the chemical characteristics of floral nectar. We investigated the growth performance of a diverse collection of Acinetobacter (n = 43) and Rosenbergiella (n = 45) isolates obtained from floral nectar and the digestive tract of flower-visiting bees in a set of 12 artificial nectars differing in sugar content (15% w/v or 50% w/v), nitrogen content (3.48/1.67 ppm or 348/167 ppm of total nitrogen/amino nitrogen), and sugar composition (only sucrose, 1/3 sucrose + 1/3 glucose + 1/3 fructose, or 1/2 glucose + 1/2 fructose). Growth was only observed in four of the 12 artificial nectars. Those containing elevated sugar concentration (50% w/v) and low nitrogen content (3.48/1.67 ppm) were limiting for bacterial growth. Furthermore, phylogenetic analyses revealed that the ability of the bacteria to grow in different types of nectar is highly conserved between closely related isolates and genotypes, but this conservatism rapidly vanishes deeper in phylogeny. Overall, these results demonstrate that the ability of Acinetobacter spp. and Rosenbergiella spp. to grow in floral nectar largely depends on nectar chemistry and bacterial phylogeny.


Assuntos
Néctar de Plantas , Açúcares , Abelhas , Animais , Néctar de Plantas/análise , Néctar de Plantas/química , Néctar de Plantas/fisiologia , Filogenia , Açúcares/análise , Carboidratos/análise , Flores/microbiologia , Glucose , Sacarose/análise , Frutose/análise , Enterobacteriaceae/genética
3.
Am J Bot ; 109(3): 393-405, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315515

RESUMO

PREMISE: Yeasts are often present in floral nectar and can influence plant fitness directly (independently of pollinators) or indirectly by influencing pollinator visitation and behavior. However, few studies have assessed the effect of nectar yeasts on plant reproductive success or compared effects across different plant species, limiting our understanding of the relative impact of direct vs. indirect effects. METHODS: We inoculated the nectar of six plant species in the field with the cosmopolitan yeast Metschnikowia reukaufii to analyze the direct and indirect effects on female reproductive success over 2 years. The pollinator assemblage for each species was recorded during both flowering years. RESULTS: Direct yeast effects on female fecundity were statistically nonsignificant for all plant species. There were significant indirect, pollinator-mediated effects on fruit production and seed mass for the two species pollinated almost exclusively by bumblebees or hawkmoths, with the direction of the effects differing for the quantity- and quality-related fitness components. There were no consistent effects of the yeast on maternal fecundity for any of the species with diverse pollinator assemblages. CONCLUSIONS: Effects of M. reukaufii on plant reproduction ranged from negative to neutral or positive depending on the plant species. The among-species variation in the indirect effects of nectar yeasts on plant pollination could reflect variation in the pollinator community, the specific microbes colonizing the nectar, and the order of microbial infection (priority effects), determining potential species interactions. Elucidating the nature of these multitrophic plant-pollinator-microbe interactions is important to understand complex processes underlying plant pollination.


Assuntos
Néctar de Plantas , Polinização , Flores , Plantas , Reprodução , Leveduras
4.
Mol Biol Rep ; 48(12): 8233-8238, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617241

RESUMO

BACKGROUND: Phlomis lychnitis is a mostly endemic species of the Iberian Peninsula that frequently hybridizes with the narrow endemic P. crinita subsp. malacitana in southern Spain. Whenever they coexist they form homoploid hybrid zones. Unlike hybridization at the polyploid level, the process of hybridization at the homoploid level is much less well known. METHODS AND RESULTS: In this study we report the development of 22 microsatellite markers through next-generation sequencing technologies for P. lychnitis. We characterize the genetic diversity for two populations of this species for the 10 markers that resulted to be polymorphic. Further, we check the transferability of these polymorphic markers to one population of P. crinita subsp. malacitana to verify the potential use of these markers for hybridization studies. The values of expected heterozygosity for P. lychnitis were higher than in P. crinita subsp. malacitana, and the three analyzed populations displayed negative values for the inbreeding coefficient which is compatible with the frequent instances of hybridization and introgression between species. CONCLUSIONS: This set of polymorphic markers are useful for further studies aiming at a deeper understanding of the homoploid hybrid process between these species. Additionally, this is the first panel of microsatellite markers developed for the genus Phlomis, a genus very rich in endemic species and with medicinal properties that could benefit from the use of these new markers.


Assuntos
Repetições de Microssatélites/genética , Phlomis/genética , DNA/genética , DNA/isolamento & purificação , Variação Genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização Genética , Lamiaceae/genética , Poliploidia , Análise de Sequência de DNA/métodos , Espanha
5.
Int J Syst Evol Microbiol ; 68(6): 2028-2035, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29688165

RESUMO

Wild flowers, and in particular, nectar of flowers, have been shown to be a rich reservoir of yeast biodiversity. In a taxonomic study of yeasts recovered from floral nectar in Morocco, nine strains were found to represent a novel species. Morphological and physiological characteristics and sequence analyses of the D1/D2 region of the large subunit rRNA gene as well as the internal transcribed spacer region showed that the novel species belonged to the genus Metschnikowia. The name Metschnikowia maroccana f.a., sp. nov. (EBDCdVMor24-1T=CBS 15053T=NRRL Y-63972T) is proposed to accommodate this new species. Metschnikowia maroccana was isolated from floral nectar of Teucrium pseudochamaepitys, Teucrium polium and Gladiolus italicus. The ascosporic state of the novel species was not found. Metschnikowia maroccana was phylogenetically distinct from any currently recognized species and forms a well-supported subclade (bootstrap value 81 %) containing species associated with flowers and flower-visiting insects, including Metschnikowia gruessii, Metschnikowia lachancei and Metschnikowia vanudenii. The close genealogical relationship of M. maroccana with the M. gruessii clade is also consistent with the striking similarity of their 'aeroplane' cells morphologies and the lack of utilization of the α-glucoside trehalose. The ecology of these novel species and its probable endemicity are discussed.


Assuntos
Metschnikowia/classificação , Filogenia , Néctar de Plantas , Biodiversidade , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Flores , Iridaceae/microbiologia , Metschnikowia/genética , Metschnikowia/isolamento & purificação , Marrocos , Análise de Sequência de DNA , Teucrium/microbiologia
6.
FEMS Yeast Res ; 17(5)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810705

RESUMO

Flowers offer favourable microenvironments for yeast growth, and are increasingly recognised as a rich source of novel yeast species. Independent surveys of yeasts associated with flowers and pollinators in South Africa led to the discovery of 38 strains of two new species. Physiological profiles and analysis of the internal transcribed spacer and the D1/D2 domains of the large subunit rRNA gene showed that they represent two novel species that belong to the Wickerhamiella clade. We describe the species as Wickerhamiella nectarea f.a. sp. nov. (type strain EBDCdVSA11-1T, CBS 14162T, NRRL Y-63791T) and W. natalensis f.a. sp. nov. (type strain EBDCdVSA7-1T, CBS 14161T, NRRL Y-63790T). We extend the known range of flower-associated Wickerhamiella species to South Africa and discuss the ecology and phylogenetic relationships of the clade in relation to its host species and biogeography. Examination of growth characteristics supports that the Wickerhamiella clade exhibits a high degree of evolutionary lability, and that specialisation to different niches may occur rapidly. We review the current status of floral yeast biodiversity and nectar as a reservoir of species diversity, and the importance of pollinators and biogeography. In addition, 18 species formerly assigned to the genus Candida are reassigned formally to the genus Wickerhamiella.


Assuntos
Biodiversidade , Flores/microbiologia , Saccharomycetales/classificação , Saccharomycetales/isolamento & purificação , Animais , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Insetos/microbiologia , Filogenia , RNA Ribossômico/genética , Saccharomycetales/genética , Análise de Sequência de DNA , África do Sul
7.
FEMS Yeast Res ; 16(1): fov115, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26703195

RESUMO

The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Metschnikowia/efeitos dos fármacos , Agricultura/métodos , Animais , Insetos/microbiologia , Medicina/métodos , Metschnikowia/isolamento & purificação , Testes de Sensibilidade Microbiana , Plantas/microbiologia
8.
Int J Syst Evol Microbiol ; 64(Pt 11): 3724-3732, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25106927

RESUMO

In a taxonomic study of yeasts recovered from nectar of flowers and associated insects in South Africa, 11 strains were found to represent two novel species. Morphological and physiological characteristics and sequence analyses of the large-subunit rRNA gene D1/D2 region, as well as the actin, RNA polymerase II and elongation factor 2 genes, showed that the two novel species belonged to the genus Metschnikowia. Metschnikowia drakensbergensis sp. nov. (type strain EBD-CdVSA09-2(T) =CBS 13649(T) =NRRL Y-63721(T); MycoBank no. MB809688; allotype EBD-CdVSA10-2(A) =CBS13650(A) =NRRL Y-63720(A)) was recovered from nectar of Protea roupelliae and the beetle Heterochelus sp. This species belongs to the large-spored Metschnikowia clade and is closely related to Metschnikowia proteae, with which mating reactions and single-spored asci were observed. Metschnikowia caudata sp. nov. (type strain EBD-CdVSA08-1(T) =CBS 13651(T) =NRRL Y-63722(T); MycoBank no. MB809689; allotype EBD-CdVSA57-2(A) =CBS 13729(A) =NRRL Y-63723(A)) was isolated from nectar of Protea dracomontana, P. roupelliae and P. subvestita and a honeybee, and is a sister species to Candida hainanensis and Metschnikowia lopburiensis. Analyses of the four sequences demonstrated the existence of three separate phylotypes. Intraspecies matings led to the production of mature asci of unprecedented morphology, with a long, flexuous tail. A single ascospore was produced in all compatible crosses, regardless of sequence phylotype. The two species appear to be endemic to South Africa. The ecology and habitat specificity of these novel species are discussed in terms of host plant and insect host species.


Assuntos
Flores/microbiologia , Metschnikowia/classificação , Filogenia , Néctar de Plantas , Animais , Besouros/microbiologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Metschnikowia/genética , Metschnikowia/isolamento & purificação , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , África do Sul
9.
Curr Opin Insect Sci ; 61: 101138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931689

RESUMO

Sugar-rich plant-related secretions, such as floral nectar and honeydew, that are commonly used as nutrient sources by insects and other animals, are also the ecological niche for diverse microbial communities. Recent research has highlighted the great potential of nectar and honeydew microbiomes in biological pest control and improved pollination, but the exploitation of these microbiomes requires a deep understanding of their community dynamics and plant-microbe-insect interactions. Additionally, the successful application of microbes in crop fields is conditioned by diverse ecological, legal, and ethical challenges that should be taken into account. In this article, we provide an overview of the nectar and honeydew microbiomes and discuss their potential applications in sustainable agricultural practices.


Assuntos
Néctar de Plantas , Polinização , Animais , Insetos , Carboidratos , Ecossistema
10.
Am J Bot ; 100(4): 792-800, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23515908

RESUMO

PREMISE OF THE STUDY: Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. METHODS: Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. KEY RESULTS: Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. CONCLUSIONS: Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.


Assuntos
Formigas/microbiologia , Metabolismo dos Carboidratos , Magnoliopsida/metabolismo , Néctar de Plantas/metabolismo , Leveduras/fisiologia , Animais , Simbiose
11.
Int J Syst Evol Microbiol ; 62(Pt 10): 2538-2545, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22407789

RESUMO

A collection of yeasts isolated from nectar of flowers of Protea caffra (Proteaceae) and associated scarab beetles (Atrichelaphinis tigrina, Cyrtothyrea marginalis, Trichostetha fascicularis and Heterochelus sp.) and drosophilid flies in South Africa, contained 28 isolates that could not be assigned to known species. Comparisons of the D1/D2 domains of the large subunit rRNA gene demonstrated the existence of three separate phylotypes with an affinity to the genus Metschnikowia and more specifically to the beetle-associated large-spored Metschnikowia clade. Twenty-six strains that had similar D1/D2 sequences were mixed in all pairwise combinations. They were found to mate and give rise to large asci typical of those in the clade. The name Metschnikowia proteae sp. nov. (type strain EBDT1Y1(T) = CBS 12522(T) = NRRL Y-48784(T); allotype strain EBDC2Y2 = CBS 12521 = NRRL Y-48785) is proposed to accommodate this novel species. The ecology of this novel yeast species is discussed in relation to its potential plant and insect host species. The additional two single strains isolated from Heterochelus sp. represent two novel undescribed species (Candida sp. 1 EBDM2Y3 and Candida sp. 2 EBDM8Y1). As these single strains are probably haploid mating types of Metschnikowia species, their description is deferred until the species are sufficiently well sampled to permit meaningful descriptions.


Assuntos
Besouros/microbiologia , Drosophilidae/microbiologia , Flores/microbiologia , Metschnikowia/classificação , Filogenia , Animais , Candida/classificação , Candida/genética , Candida/isolamento & purificação , DNA Fúngico/genética , Genes de RNAr , Metschnikowia/genética , Metschnikowia/isolamento & purificação , Dados de Sequência Molecular , Néctar de Plantas/análise , Análise de Sequência de DNA , África do Sul
12.
Ann Bot ; 107(4): 629-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21303784

RESUMO

BACKGROUND AND AIMS: Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles. METHODS: Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet. KEY RESULTS: The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits. CONCLUSIONS: A novel plant-animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds.


Assuntos
Besouros/fisiologia , Dispersão de Sementes/fisiologia , Animais , Comportamento Alimentar/fisiologia , Frutas/fisiologia , Germinação , Malvaceae/embriologia , Fatores de Tempo
13.
Am J Bot ; 98(4): 597-601, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21613160

RESUMO

In a recent study (American Journal of Botany 97: 730-737), we described the first case of a tripartite association in natural conditions among a holoparasitic plant (Cytinus), its host Cistaceae species, and mycorrhizal fungi at an anatomical level. In a letter to the editor, Brundrett (American Journal of Botany 98: 595-596) commented on our manuscript and questioned our conclusions, arguing that they are not adequately supported by the data. We reject this point of view and believe that the controversy has arisen because of the parasitic way of life of Cytinus. We maintain and demonstrate that there is enough evidence in the data that we presented to confirm the existence of mycorrhizal associations in the Cytinus-Cistaceae complex, supporting the functionality of the tripartite association. Most holoparasitic plants have been considered as nonmycorrhizal. However, it is not advisable to be categorical in drawing conclusions about the mycorrhizal status of a group of plants that has not been fully studied.

14.
PLoS One ; 15(10): e0240093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031481

RESUMO

Flowers produce an array of nutrient-rich exudates in which microbes can thrive, making them hotspots for microbial abundance and diversity. During a diversity study of yeasts inhabiting the flowers of Metrosideros polymorpha (Myrtaceae) in the Hawai'i Volcanoes National Park (HI, USA), five isolates were found to represent two novel species. Morphological and physiological characterization, and sequence analysis of the small subunit ribosomal RNA (rRNA) genes, the D1/D2 domains of the large subunit rRNA genes, the internal transcribed spacer (ITS) regions, and the genes encoding the largest and second largest subunits of the RNA polymerase II (RPB1 and RPB2, respectively), classified both species in the family Metschnikowiaceae, and we propose the names Candida metrosideri pro tempore sp. nov. (JK22T = CBS 16091 = MUCL 57821) and Candida ohialehuae pro tempore sp. nov. (JK58.2T = CBS 16092 = MUCL 57822) for such new taxa. Both novel Candida species form a well-supported subclade in the Metschnikowiaceae containing species associated with insects, flowers, and a few species of clinical importance. The ascosporic state of the novel species was not observed. The two novel yeast species showed elevated minimum inhibitory concentrations to the antifungal drug amphotericin B (>4 µg/mL). The ecology and phylogenetic relationships of C. metrosideri and C. ohialehuae are also discussed.


Assuntos
Candida/classificação , Myrtaceae/microbiologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candida/isolamento & purificação , Farmacorresistência Fúngica , Flores/microbiologia , Havaí , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , RNA Ribossômico/classificação , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
15.
Ann Bot ; 103(9): 1415-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19208669

RESUMO

BACKGROUND AND AIMS: One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. METHODS: The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37-63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. KEY RESULTS: Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 x 10(5) cells mm(-3)). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 10(4) cells mm(-3) were commonplace, and densities >10(5) cells mm(-3) were not rare. About one-fifth of species at each site had mean yeast cell densities >10(4) cells mm(-3). Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. CONCLUSIONS: Incorporating nectar yeasts into the scenario of plant-pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence of yeasts in nectar samples.


Assuntos
Flores/microbiologia , Mel/microbiologia , Leveduras/isolamento & purificação , Animais , Contagem de Colônia Microbiana , Ecossistema , Polinização , Leveduras/citologia , Leveduras/metabolismo
16.
Ann Bot ; 103(7): 1065-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19258337

RESUMO

BACKGROUND AND AIMS: The genus Cytinus is composed of rootless, stemless and leafless parasites whose flowers are only visible during the reproductive period when they arise from the host tissues. Most of the taxa occur in Madagascar and South Africa, where mammal pollination has been suggested for one species. There is only one species in the Mediterranean region, and its pollination system has been unknown. Here, a long-term field observation study is combined with experimental pollination treatments in order to assess the pollination biology and reproductive system in the Mediterranean species Cytinus hypocistis. METHODS: Field studies were carried out in six populations in southern Spain over 4 years. Temporal and spatial patterns of variation in the composition and behaviour of floral visitors were characterized. Pollen loads and pollen viability were observed, and exclusion and controlled-pollination treatments were also conducted. KEY RESULTS: Cytinus hypocistis is a self-compatible monoecious species that relies on insects for seed production. Ants were the main visitors, accounting for 97.4 % of total floral visits, and exclusion experiments showed that they act as true pollinators. They consistently touched reproductive organs, carried large pollen loads and transported viable pollen, although the different ant species observed in the flowers differed in their pollination effectiveness. The abundance of flying visitors was surprisingly low, and only the fly Oplisa aterrima contributed to fruit production and cross-pollination. CONCLUSIONS: Mutualistic services by ant are essential for the pollination of Cytinus hypocistis. Although this parasite does not exhibit typical features of the 'ant-pollination syndrome', many other characteristics indicate that it is evolving to a more specialized ant-pollination system. The striking interspecific differences in the pollination systems of Mediterranean Cytinus (ant-pollinated) and some South African Cytinus (mammal-pollinated) make this genus an excellent model to investigate the divergent evolution of pollination systems in broadly disjunct areas.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Raízes de Plantas/parasitologia , Polinização/fisiologia , Região do Mediterrâneo , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
17.
New Phytol ; 178(4): 875-887, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18373515

RESUMO

* Speciation via race formation is an important evolutionary process in parasites, producing changes that favour their development on particular host species. Here, the holoparasitic plant Cytinus, which has diverse host species in the family Cistaceae, has been used to study the occurrence of such races. * Amplified fragment length polymorphism (AFLP) analyses were performed on 174 individuals of 22 populations parasitizing 10 Cistaceae species in the Western Mediterranean basin. * Neighbour-joining, multivariate ordination analyses, and individual-based Bayesian analyses, clustered Cytinus populations into five well-characterized genetic races that, overall, agreed with the taxonomic sections of their hosts. In the AMOVA, among-races differences accounted for almost 50% of the genetic variation. The isolation-by-distance model was not supported by a Mantel test among Cytinus populations (r = 0.012; P = 0.456). All races showed low within-population genetic diversity, probably as a result of restricted pollen flow aggravated by flowering asynchrony, restricted seed dispersion, or stochastic processes. * The genetic differentiation among the five races of Cytinus is congruent with the view that these races are well-characterized lineages that have evolved independently as a result of selective pressures imposed by their hosts. This pattern, with genetically distinctive groups associated with the infrageneric sections of the host species, has not been reported previously for parasitic angiosperms.


Assuntos
Cistaceae/parasitologia , Especiação Genética , Interações Hospedeiro-Parasita , Magnoliopsida/classificação , Magnoliopsida/genética , Teorema de Bayes , Análise por Conglomerados , Variação Genética , Geografia , Magnoliopsida/fisiologia , Região do Mediterrâneo , Marrocos , Filogenia , Espanha
18.
Ann Bot ; 100(6): 1209-17, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17804607

RESUMO

BACKGROUND AND AIMS: One of the most extreme manifestations of parasitism is found in the genus Cytinus, a holoparasite whose vegetative body is reduced to an endophytic system living within its host root. There are two species of Cytinus in the Mediterranean, C. hypocistis and C. ruber, which parasitize various genera of Cistaceae, one of the most characteristic families of the Mediterranean scrublands. The aim of this work is to describe the endophytic systems of C. hypocistis and C. ruber, and their tissue relationships with their host. METHODS: Roots from five different hosts infected with C. hypocistis and C. ruber were harvested, and examined by anatomical techniques under light microscopy to elucidate the characteristics of the endophytic system of Cytinus, and to determine if differences in endophytic systems occur between the two species and in response to different hosts. KEY RESULTS: The endophyte structure is similar in both Cytinus species irrespective of the host species. In the initial stages of the endophyte, rows of parenchymal cells spread through the host pericyclic derivatives and phloem, and begin to generate small nodules in the outermost region of the host xylem. Later the nodules anastomose, and bands of parasitic tissue are formed. The host cambium continues to develop xylem tissue, and consequently the endophyte becomes enclosed within the xylem. The bands of parasitic tissue fuse to form a continuous sheath. This mature endophyte has well-developed vascular system with xylem and phloem, and forms sinkers with transfer cells that grow through the host xylem. CONCLUSIONS: The endophytic system of Cytinus develops in all host root tissues and reaches its most mature stages in the host xylem. It is more complex than previously reported, showing parenchyma, xylem and phloem tissues. This is the first report of well-developed phloem in a holoparasitic endophytic species.


Assuntos
Cistaceae/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Cistaceae/citologia , Região do Mediterrâneo , Floema/citologia , Floema/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Especificidade da Espécie , Simbiose , Xilema/citologia , Xilema/crescimento & desenvolvimento
19.
Syst Appl Microbiol ; 37(6): 402-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24794950

RESUMO

The taxonomic status of nine strains of the family Enterobacteriaceae isolated from floral nectar of wild Belgian, French, South African and Spanish insect-pollinated plants was investigated following a polyphasic approach. Confirmation that these strains belonged to the genus Rosenbergiella was obtained from comparative analysis of partial sequences of the 16S rRNA gene and other core housekeeping genes (atpD [ATP synthase ß-chain], gyrB [DNA gyrase subunit B] and rpoB [RNA polymerase ß-subunit]), DNA-DNA reassociation data, determination of the DNA G+C content and phenotypic profiling. Two strains belonged to the recently described species Rosenbergiella nectarea, while the other seven strains represented three novel species within the genus Rosenbergiella. The names Rosenbergiella australoborealis sp. nov. (with strain CdVSA 20.1(T) [LMG 27954(T)=CECT 8500(T)] as the type strain), Rosenbergiella collisarenosi sp. nov. (with strain 8.8A(T) [LMG 27955(T)=CECT 8501(T)] as the type strain) and Rosenbergiella epipactidis sp. nov. (with strain 2.1A(T) [LMG 27956(T)=CECT 8502(T)] as the type strain) are proposed. Additionally, the description of the genus Rosenbergiella is updated on the basis of new phenotypic and molecular data.


Assuntos
DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Genes Essenciais , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/química , Enterobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fenótipo , Filogenia , Néctar de Plantas
20.
PLoS One ; 8(10): e75797, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116076

RESUMO

The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.


Assuntos
Variação Genética , Néctar de Plantas , Plantas/microbiologia , Pseudomonas/genética , Desequilíbrio de Ligação , Tipagem de Sequências Multilocus , Pseudomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA