Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 7(2): e30562, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363445

RESUMO

CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor ß (TGFß) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.


Assuntos
Membrana Basal/crescimento & desenvolvimento , Membrana Basal/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Endoteliais/patologia , Neovascularização Fisiológica , Pericitos/metabolismo , Pericitos/patologia , Animais , Membrana Basal/patologia , Membrana Basal/ultraestrutura , Vasos Sanguíneos/anormalidades , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Adesão Celular , Comunicação Celular , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Mutantes , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
2.
Development ; 135(10): 1791-801, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18403408

RESUMO

Loss of Dkk1 results in ectopic WNT/beta-catenin signalling activity in the anterior germ layer tissues and impairs cell movement in the endoderm of the mouse gastrula. The juxtaposition of the expression domains of Dkk1 and Wnt3 is suggestive of an antagonist-agonist interaction. The downregulation of Dkk1 when Wnt3 activity is reduced reveals a feedback mechanism for regulating WNT signalling. Compound Dkk1;Wnt3 heterozygous mutant embryos display head truncation and trunk malformation, which are not found in either Dkk1(+/-) or Wnt3(+/-) embryos. Reducing the dose of Wnt3 gene in Dkk1(-/-) embryos partially rescues the truncated head phenotype. These findings highlight that head development is sensitive to the level of WNT3 signalling and that DKK1 is the key antagonist that modulates WNT3 activity during anterior morphogenesis.


Assuntos
Cabeça/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Morfogênese/fisiologia , Proteínas Wnt/fisiologia , Animais , Padronização Corporal/fisiologia , Regulação para Baixo , Gástrula/citologia , Gástrula/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Mutantes , Mutação , Transdução de Sinais , Proteínas Wnt/genética , Proteína Wnt3
3.
Dev Biol ; 264(1): 1-14, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14623228

RESUMO

The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Biomarcadores , Humanos , Camundongos , Transdução de Sinais/fisiologia , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA