Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Neurosci Res ; 101(10): 1586-1610, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37314006

RESUMO

Aging is associated with cognitive decline and is the main risk factor for a myriad of conditions including neurodegeneration and stroke. Concomitant with aging is the progressive accumulation of misfolded proteins and loss of proteostasis. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and activation of the unfolded protein response (UPR). The UPR is mediated, in part, by the eukaryotic initiation factor 2α (eIF2α) kinase protein kinase R-like ER kinase (PERK). Phosphorylation of eIF2α reduces protein translation as an adaptive mechanism but this also opposes synaptic plasticity. PERK, and other eIF2α kinases, have been widely studied in neurons where they modulate both cognitive function and response to injury. The impact of astrocytic PERK signaling in cognitive processes was previously unknown. To examine this, we deleted PERK from astrocytes (AstroPERKKO ) and examined the impact on cognitive functions in middle-aged and old mice of both sexes. Additionally, we tested the outcome following experimental stroke using the transient middle cerebral artery occlusion (MCAO) model. Tests of short-term and long-term learning and memory as well as of cognitive flexibility in middle-aged and old mice revealed that astrocytic PERK does not regulate these processes. Following MCAO, AstroPERKKO had increased morbidity and mortality. Collectively, our data demonstrate that astrocytic PERK has limited impact on cognitive function and has a more prominent role in the response to neural injury.


Assuntos
Astrócitos , Aprendizagem , Acidente Vascular Cerebral , eIF-2 Quinase , Animais , Feminino , Masculino , Camundongos , Retículo Endoplasmático , Proteínas Quinases , eIF-2 Quinase/metabolismo
2.
BMC Biol ; 20(1): 142, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705939

RESUMO

BACKGROUND: Circadian rhythms are important for all aspects of biology; virtually every aspect of biological function varies according to time of day. Although this is well known, variation across the day is also often ignored in the design and reporting of research. For this review, we analyzed the top 50 cited papers across 10 major domains of the biological sciences in the calendar year 2015. We repeated this analysis for the year 2019, hypothesizing that the awarding of a Nobel Prize in 2017 for achievements in the field of circadian biology would highlight the importance of circadian rhythms for scientists across many disciplines, and improve time-of-day reporting. RESULTS: Our analyses of these 1000 empirical papers, however, revealed that most failed to include sufficient temporal details when describing experimental methods and that few systematic differences in time-of-day reporting existed between 2015 and 2019. Overall, only 6.1% of reports included time-of-day information about experimental measures and manipulations sufficient to permit replication. CONCLUSIONS: Circadian rhythms are a defining feature of biological systems, and knowing when in the circadian day these systems are evaluated is fundamentally important information. Failing to account for time of day hampers reproducibility across laboratories, complicates interpretation of results, and reduces the value of data based predominantly on nocturnal animals when extrapolating to diurnal humans.


Assuntos
Biologia , Ritmo Circadiano , Animais , Reprodutibilidade dos Testes
3.
Nutr Neurosci ; 25(12): 2650-2658, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34772330

RESUMO

Chemotherapy can result in toxic side effects in the brain. Intake of marine-based omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), alter brain fatty acids, potentially improving brain function. However, it is unclear if alpha-linolenic acid (ALA), the plant-based n-3, affects brain PUFAs during chemotherapy. The objective of this study was to examine the effects of dietary ALA, EPA and DHA, with high or low sucrose, on brain PUFAs in a mouse model of chemotherapy. Secondarily, the use of liver PUFAs as surrogate measures of brain PUFAs was examined. Lipid peroxidation (4-HNE) and neurotrophic markers (BDNF) were assessed. Female C57Bl/6 mice (n = 90) were randomized to 1 of 5 diets (high EPA + DHA/high or low sucrose, high ALA/high or low sucrose, or control with no EPA + DHA/low ALA/low sucrose) and injected with doxorubicin-based chemotherapy or saline. Brain EPA and DHA were greater (p < 0.0001) with high EPA + DHA diets, regardless of sucrose; there were no significant differences in brain PUFAs between high ALA diets and control. Chemotherapy-treated mice had higher brain and liver DHA (p < 0.05) and lower brain and liver linoleic acid (p < 0.0001). Brain n-3 and n-6 PUFAs were strongly correlated with liver n-3 (r = 0.8214, p < 0.0001) and n-6 PUFAs (r = 0.7568, p < 0.0001). BDNF was correlated with brain total PUFAs (r = 0.36; p < 0.05). In conclusion, dietary ALA in proportions approximately two times greater than consumed by humans did not appreciably increase brain n-3 PUFAs compared to low ALA intake. Liver PUFAs may be a useful surrogate marker of brain PUFAs in this mouse model.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Animais , Camundongos , Biomarcadores , Encéfalo , Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Fígado , Camundongos Endogâmicos C57BL , Sacarose
4.
Eur J Neurosci ; 52(9): 4139-4146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32691462

RESUMO

Circadian rhythms are endogenous biological cycles that synchronize physiology and behaviour to promote optimal function. These ~24-hr internal rhythms are set to precisely 24 hr daily by exposure to the sun. However, the prevalence of night-time lighting has the potential to dysregulate these biological functions. Hospital patients may be particularly vulnerable to the consequences of light at night because of their compromised physiological state. A mouse model of stroke (middle cerebral artery occlusion; MCAO) was used to test the hypothesis that exposure to dim light at night impairs responses to a major insult. Stroke lesion size was substantially larger among animals housed in dLAN after reperfusion than animals maintained in dark nights. Mice housed in dLAN for three days after the stroke displayed increased post-stroke anxiety-like behaviour. Overall, dLAN amplified pro-inflammatory pathways in the CNS, which may have exacerbated neuronal damage. Our results suggest that exposure to LAN is detrimental to stroke recovery.


Assuntos
Ritmo Circadiano , Acidente Vascular Cerebral , Animais , Ansiedade , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios , Fotoperíodo
5.
Brain Behav Immun ; 89: 451-464, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32735935

RESUMO

Breast cancer survivors receiving chemotherapy often report increased anxiety and depression. However, the mechanism underlying chemotherapy-induced changes in affect remains unknown. We hypothesized that chemotherapy increases cytokine production, in turn altering exploratory and depressive-like behavior. To test this hypothesis, female Balb/C mice received two injections, separated by two weeks, of vehicle (0.9% saline) or a chemotherapeutic cocktail [9 mg/kg doxorubicin (A) and 90 mg/kg cyclophosphamide (C)]. Peripheral and central cytokine concentrations were increased one and seven days, respectively, after AC. Because of the beneficial effects of social enrichment on several diseases with inflammatory components, we examined whether social enrichment could attenuate the increase in peripheral and central cytokine production following chemotherapy administration. Socially isolated mice receiving AC therapy demonstrated increased depressive-like and exploratory behaviors with a concurrent increase in hippocampal IL-6. Whereas, group housing attenuated AC-induced IL-6 and depressive-like behavior. Next, we sought to determine whether central oxytocin may contribute to the protective effects of social housing after AC administration. Intracerebroventricular administration of oxytocin to socially isolated mice recapitulated the protective effects of social enrichment; specifically, oxytocin ameliorated the AC-induced effects on IL-6 and depressive-like behavior. Furthermore, administration of an oxytocin antagonist to group housed mice recapitulated the responses of socially isolated mice; specifically, AC increased depressive-like behavior and central IL-6. These data suggest a possible neuroprotective role for oxytocin following chemotherapy, via modulation of IL-6. This study adds to the growing literature detailing the negative behavioral effects of chemotherapy and provides further evidence that social enrichment may be beneficial to health.


Assuntos
Antineoplásicos , Ocitocina , Animais , Comportamento Animal , Citocinas , Comportamento Exploratório , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Comportamento Social
6.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302582

RESUMO

For many individuals in industrialized nations, the widespread adoption of electric lighting has dramatically affected the circadian organization of physiology and behavior. Although initially assumed to be innocuous, exposure to artificial light at night (ALAN) is associated with several disorders, including increased incidence of cancer, metabolic disorders, and mood disorders. Within this review, we present a brief overview of the molecular circadian clock system and the importance of maintaining fidelity to bright days and dark nights. We describe the interrelation between core clock genes and the cell cycle, as well as the contribution of clock genes to oncogenesis. Next, we review the clinical implications of disrupted circadian rhythms on cancer, followed by a section on the foundational science literature on the effects of light at night and cancer. Finally, we provide some strategies for mitigation of disrupted circadian rhythms to improve health.


Assuntos
Carcinogênese/metabolismo , Ritmo Circadiano , Neoplasias/epidemiologia , Animais , Carcinogênese/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Humanos , Neoplasias/etiologia , Jornada de Trabalho em Turnos/efeitos adversos
7.
Breast Cancer Res ; 18(1): 54, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225892

RESUMO

Social environment is a well-recognized determinant in health and wellbeing. Among breast cancer patients, inadequate social support is associated with a substantial increase in cancer-related mortality. A common explanation is that socially isolated individuals fare worse due to reduced instrumental support (i.e., assistance meeting the demands of treatment). However, the ability to replicate the detrimental effects of social isolation on mammary tumor growth in rodents strongly suggests an alternative explanation; i.e., socially isolated individuals have a physiological milieu that promotes tumor growth. This review summarizes the clinical and basic science literature supporting social influences on breast cancer, and provides a conceptual physiological framework for these effects. We propose that social environment contributes to the vast individual differences in prognosis among breast cancer survivors because social environment is capable of altering basic physiological processes, which in turn can modulate tumor growth. Appreciation of the role of social environment in breast cancer progression could promote the identification of patients at increased risk for poor outcomes. In addition, characterization of the underlying physiological mechanisms could lead to targeted disruption of detrimental pathways that promote tumor progression in socially isolated individuals, or exploitation of protective pathways activated through social engagement as novel therapeutic complements to contemporary treatments.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Suscetibilidade a Doenças , Meio Social , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Avaliação do Impacto na Saúde , Humanos , Neoplasias Mamárias Experimentais , Ocitocina/metabolismo , Transdução de Sinais , Mudança Social , Isolamento Social , Estresse Fisiológico , Estresse Psicológico
8.
Brain Behav Immun ; 47: 218-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25449581

RESUMO

Sleep disruption ranks among the most common complaints of breast cancer patients undergoing chemotherapy. Because of the complex interactions among cancer, treatment regimens, and life-history traits, studies to establish a causal link between chemotherapy and sleep disruption are uncommon. To investigate how chemotherapy acutely influences sleep, adult female c57bl/6 mice were ovariectomized and implanted with wireless biotelemetry units. EEG/EMG biopotentials were collected over the course of 3days pre- and post-injection of 13.5mg/kg doxorubicin and 135mg/kg cyclophosphamide or the vehicle. We predicted that cyclophosphamide+doxorubicin would disrupt sleep and increase central proinflammatory cytokine expression in brain areas that govern vigilance states (i.e., hypothalamus and brainstem). The results largely support these predictions; a single chemotherapy injection increased NREM and REM sleep during subsequent active (dark) phases; this induced sleep was fragmented and of low quality. Mice displayed marked increases in low theta (5-7Hz) to high theta (7-10Hz) ratios following chemotherapy treatment, indicating elevated sleep propensity. The effect was strongest during the first dark phase following injection, but mice displayed disrupted sleep for the entire 3-day duration of post-injection sleep recording. Vigilance state timing was not influenced by treatment, suggesting that acute chemotherapy administration alters sleep homeostasis without altering sleep timing. qPCR analysis revealed that disrupted sleep was accompanied by increased IL-6 mRNA expression in the hypothalamus. Together, these data implicate neuroinflammation as a potential contributor to sleep disruption after chemotherapy.


Assuntos
Ciclofosfamida/farmacologia , Doxorrubicina/farmacologia , Hipotálamo/efeitos dos fármacos , Interleucina-6/metabolismo , Sono/efeitos dos fármacos , Animais , Eletroencefalografia , Feminino , Hipotálamo/metabolismo , Camundongos , Vigília/efeitos dos fármacos
9.
Sci Rep ; 14(1): 848, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191908

RESUMO

Despite its demonstrated biological significance, time of day is a broadly overlooked biological variable in preclinical and clinical studies. How time of day affects the influence of peripheral tumors on central (brain) function remains unspecified. Thus, we tested the hypothesis that peripheral mammary cancer tumors alter the transcriptome of immune responses in the brain and that these responses vary based on time of day; we predicted that time of day sampling bias would alter the interpretation of the results. Brain tissues collected at mid dark and mid light from mammary tumor-bearing and vehicle injected mice were analyzed using the Nanostring nCounter immune panel. Peripheral mammary tumors significantly affected expression within the brain of over 100 unique genes of the 770 represented in the panel, and fewer than 25% of these genes were affected similarly across the day. Indeed, between 65 and 75% of GO biological processes represented by the differentially expressed genes were dependent upon time of day of sampling. The implications of time-of-day sampling bias in interpretation of research studies cannot be understated. We encourage considering time of day as a significant biological variable in studies and to appropriately control for it and clearly report time of day in findings.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Viés , Viés de Seleção , Neoplasias Mamárias Animais/genética , Encéfalo , Transcriptoma
10.
Sci Rep ; 14(1): 7760, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565934

RESUMO

Disrupted or atypical light-dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.


Assuntos
Ritmo Circadiano , Demência Vascular , Animais , Camundongos , Masculino , Feminino , Ritmo Circadiano/fisiologia , Fotoperíodo , Reconhecimento Psicológico , Demência Vascular/etiologia , Cognição
11.
Heliyon ; 10(1): e23366, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148808

RESUMO

Aging is a risk factor for the development of breast cancer. Foundational science studies have supported associations among neuroinflammation, breast cancer, and chemotherapy, but to date, these associations are based on studies using young adult rodents. The current study examined the neuroinflammatory effects of chemotherapy in aged, tumor-naïve and tumor-bearing mice with or without social enrichment. Mice received two intravenous injections of doxorubicin (A) and cyclophosphamide (C) at a two-week interval. Brain immune cells were enriched/assessed via flow cytometry, seven days following the second chemotherapy injection. Social enrichment enhanced peripheral immune cell trafficking in aged tumor-naive mice treated with AC. Group housed aged tumor bearing mice receiving AC had reduced percentage of IL-6+ monocytes and granulocytes relative to their singly housed counterparts. Notably, group housing aged experimental mice with young cage partners significantly reduced TNF + monocytes, tumor volume, and tumor mass. These data illustrate the importance of social enrichment in attenuating neuroinflammation and are the first to demonstrate that social support with young housing partners reduces tumor growth in aged mice.

12.
Exp Neurol ; 377: 114796, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677449

RESUMO

Circadian rhythms are endogenous biological cycles that regulate physiology and behavior and are set to precisely 24-h by light exposure. Light at night (LAN) dysregulates physiology and function including immune response; a critical component that contributes to stroke pathophysiological progression of neuronal injury and may impair recovery from injury. The goal of this study is to explore the effects of dim LAN (dLAN) in a murine model of ischemic stroke to assess how nighttime lighting from hospital settings can affect stroke outcome. Further, this study sought to identify mechanisms underlying pathophysiological changes to immune response after circadian disruption. Male and female adult Swiss Webster (CFW) mice were subjected to transient or permanent focal cerebral ischemia, then were subsequently placed into either dark night conditions (LD) or one night of dLAN (5 lx). 24 h post-stroke, sensorimotor impairments and infarct sizes were quantified. A single night of dLAN following MCAO increased infarct size and sensorimotor deficits across both sexes and reduced survival in males after 24 h. Flow cytometry was performed to assess microglial phenotypes after MCAO, and revealed that dLAN altered the percentage of microglia that express pro-inflammatory markers (MHC II+ and IL-6) and microglia that express CD206 and IL-10 that likely contributed to poor ischemic outcomes. Following these results, microglia were reduced in the brain using Plexxikon 5622 (PLX 5622) a CSFR1 inhibitor, then the mice received an MCAO and were exposed to LD or dLAN conditions for 24 h. Microglial depletion by PLX5622 resulted in infarct sizes that were comparable between lighting conditions. This study provides supporting evidence that environmental lighting exacerbates ischemic injury and post-stroke mortality by a biological mechanism that exposure to dLAN causes a fundamental shift of activated microglial phenotypes from beneficial to detrimental at an early time point after stroke, resulting in irreversible neuronal death.


Assuntos
AVC Isquêmico , Microglia , Animais , Microglia/patologia , Microglia/metabolismo , Camundongos , Masculino , Feminino , AVC Isquêmico/patologia , Luz/efeitos adversos , Ritmo Circadiano/fisiologia , Isquemia Encefálica/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia
13.
Proc Natl Acad Sci U S A ; 107(37): 16342-7, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805484

RESUMO

Psychological factors, including depression and social isolation, are important determinants of cardiovascular health. The current study uses a well-validated mouse model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR) to examine the effect of social environment on several pathophysiological and behavioral responses to cerebral ischemia. Male experimental mice were either housed in pairs with an ovariectomized female or socially isolated for the duration of the experiment. Cardiac arrest increased the mRNA expression of the proinflammatory cytokines TNF-α, IL-1ß, and IL-6, as well as the microglia marker MAC-1; expression of each of these factors, except IL-6, was further increased among socially isolated mice. Furthermore, socially isolated animals exposed to the CA/CPR procedure displayed significantly higher levels of neuronal cell death and microglia staining within the hippocampus at 7 d following surgery. Social isolation also exacerbated CA/CPR-induced depressive-like behavior and cardiac autonomic dysregulation. In the absence of ischemic damage, social environment had no significant effect on the expression of neuronal cell death, autonomic cardiac control, or behavior. Together, these data suggest that social factors influence the pathophysiological trajectory following cardiac arrest.


Assuntos
Depressão/fisiopatologia , Parada Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Comportamento Social , Animais , Reanimação Cardiopulmonar , Citocinas/genética , Citocinas/metabolismo , Depressão/metabolismo , Feminino , Regulação da Expressão Gênica , Parada Cardíaca/genética , Parada Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , RNA Mensageiro/genética
14.
Learn Mem ; 19(11): 550-60, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077336

RESUMO

Environmental enrichment (EE) has marked beneficial effects on cognitive capacity. Given the possibility that this form of neuronal plasticity could function via the actuation of the same cellular signaling pathways that underlie learning/memory formation, we examined whether the MAPK cascade effector, mitogen/stress-activated kinase 1 (MSK1), could play a role in this process. MSK1 functions as a key signaling intermediate that couples changes in neuronal activity into inducible gene expression, neuronal plasticity, and learning/memory. Here, we show that MSK1 is expressed in excitatory cell layers of the hippocampus, progenitor cells of the subgranular zone (SGZ), and adult-born immature neurons. MSK1(-/-) mice exhibit reduced spinogenesis and decreased dendritic branching complexity in hippocampal neurons, compared with WT mice. Further, in MSK1(-/-) mice, progenitor cell proliferation within the SGZ was significantly reduced and, correspondingly, the number of immature neurons within the dentate gyrus was significantly reduced. Consistent with prior work, MSK1(-/-) mice displayed deficits in both spatial and recognition memory tasks. Strikingly, cognitive enhancement resulting from a 40-d period of EE was markedly reduced in MSK1(-/-) animals. MSK1(-/-) mice exhibited reduced levels of EE-induced spinogenesis and SGZ progenitor proliferation. Taken together, these data reveal that MSK1 serves as a critical regulator of hippocampal physiology and function and that MSK1 serves as a key conduit by which enriching stimuli augment cellular plasticity and cognition.


Assuntos
Cognição/fisiologia , Meio Ambiente , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Western Blotting , Proliferação de Células , Imunofluorescência , Abrigo para Animais , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
15.
Pharmaceutics ; 15(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37631237

RESUMO

Circadian rhythms are internal manifestations of the 24-h solar day that allow for synchronization of biological and behavioral processes to the external solar day. This precise regulation of physiology and behavior improves adaptive function and survival. Chronotherapy takes advantage of circadian rhythms in physiological processes to optimize the timing of drug administration to achieve maximal therapeutic efficacy and minimize negative side effects. Chronotherapy for cancer treatment was first demonstrated to be beneficial more than five decades ago and has favorable effects across diverse cancer types. However, implementation of chronotherapy in clinic remains limited. The present review examines the evidence for chronotherapeutic treatment for solid tumors. Specifically, studies examining chrono-chemotherapy, chrono-radiotherapy, and alternative chronotherapeutics (e.g., hormone therapy, TKIs, antiangiogenic therapy, immunotherapy) are discussed. In addition, we propose areas of needed research and identify challenges in the field that remain to be addressed.

16.
Physiol Behav ; 266: 114186, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028499

RESUMO

Physiology and behavior are synchronized to the external environment by endogenous circadian rhythms that are set to precisely 24 h by exposure to bright light early in the day. Exposure to artificial light outside of the typical solar day, such as during the night, may impair aspects of physiology and behavior in human and non-human animals. Both the intensity and the wavelength of light are important in mediating these effects. The present report is the result of an unplanned change in our vivarium lighting conditions, which led to the observation that dim light during the daytime affects body mass similarly to dim nighttime light exposure in male Swiss Webster mice. Mice exposed to bright days (≥125 lux) with dark nights (0 lux) gained significantly less weight than those exposed to bright days with dim light at night (5 lux) or dim days (≤60 lux) with either dark nights or dim light at night. Notably, among the mice exposed to dim daytime light, no weight gain differences were observed between dark nights and dim light at night exposure; however dim light at night exposure shifted food intake to the inactive phase as previously reported. The mechanisms mediating these effects remain unspecified, but it appears that dimly illuminated days may have similar adverse metabolic effects as exposure to artificial light at night.


Assuntos
Ritmo Circadiano , Atividade Motora , Masculino , Camundongos , Animais , Ritmo Circadiano/fisiologia
17.
iScience ; 26(7): 106996, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534143

RESUMO

The structure and function of the cardiovascular system are modulated across the day by circadian rhythms, making this system susceptible to circadian rhythm disruption. Recent evidence demonstrated that short-term exposure to a pervasive circadian rhythm disruptor, artificial light at night (ALAN), increased inflammation and altered angiogenic transcripts in the hippocampi of mice. Here, we examined the effects of four nights of ALAN exposure on mouse hippocampal vascular networks. To do this, we analyzed 2D and 3D images of hippocampal vasculature and hippocampal transcriptomic profiles of mice exposed to ALAN. ALAN reduced vascular density in the CA1 and CA2/3 of female mice and the dentate gyrus of male mice. Network structure and connectivity were also impaired in the CA2/3 of female mice. These results demonstrate the rapid and potent effects of ALAN on cerebrovascular networks, highlighting the importance of ALAN mitigation in the context of health and cerebrovascular disease.

18.
J Neurosci ; 31(9): 3446-52, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21368056

RESUMO

Cardiac arrest is a leading cause of death worldwide. While survival rates following sudden cardiac arrest remain relatively low, recent advancements in patient care have begun to increase the proportion of individuals who survive cardiac arrest. However, many of these individuals subsequently develop physiological and psychiatric conditions that likely result from ongoing neuroinflammation and neuronal death. The present study was conducted to better understand the pathophysiological effects of cardiac arrest on neuronal cell death and inflammation, and their modulation by the cholinergic system. Using a well validated model of cardiac arrest, here we show that global cerebral ischemia increases microglial activation, proinflammatory cytokine mRNA expression (interleukin-1ß, interleukin-6, tumor necrosis factor-α), and neuronal damage. Cardiac arrest also induces alterations in numerous cellular components of central cholinergic signaling, including a reduction in choline acetyltransferase enzymatic activity and the number of choline acetyltransferase-positive neurons, as well as, reduced acetylcholinesterase and vesicular acetylcholine transporter mRNA. However, treatment with a selective agonist of the α7 nicotinic acetylcholine receptor, the primary receptor mediating the cholinergic anti-inflammatory pathway, significantly decreases the neuroinflammation and neuronal damage resulting from cardiac arrest. These data suggest that global cerebral ischemia results in significant declines in central cholinergic signaling, which may in turn diminish the capacity of the cholinergic anti-inflammatory pathway to control inflammation. Furthermore, we provide evidence that pharmacological activation of α7 nicotinic acetylcholine receptors provide significant protection against ischemia-related cell death and inflammation within a clinically relevant time frame.


Assuntos
Isquemia Encefálica/fisiopatologia , Parada Cardíaca/patologia , Mediadores da Inflamação/fisiologia , Agonistas Nicotínicos , Receptores Nicotínicos/fisiologia , Ressuscitação/efeitos adversos , Animais , Compostos de Benzilideno/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/fisiopatologia , Mediadores da Inflamação/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Nicotínicos/administração & dosagem , Piridinas/administração & dosagem , Distribuição Aleatória , Ressuscitação/métodos , Transdução de Sinais/fisiologia , Fatores de Tempo , Receptor Nicotínico de Acetilcolina alfa7
19.
Proc Natl Acad Sci U S A ; 106(11): 4525-30, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19246380

RESUMO

Outside of the tropics, environmental conditions fluctuate in a generally predictable manner across the year. Many small mammals have evolved mechanisms, such as seasonal breeding and annual adjustments in physiology, morphology, and behavior, that promote winter survival when food is scarce and thermoregulation is challenging. Photoperiod (day length) is a cue used by many seasonal breeders to predict seasonal changes in environmental conditions. One system that is uniquely situated to mediate photoperiod-induced alterations in physiology is the autonomic nervous system (ANS). The 2 branches of the ANS are key regulators of immune responses, thermoregulation, and energy balance, functions that undergo marked shifts in baseline and reactivity following acclimation to short day lengths. Although previous studies have investigated the effects of photoperiod on ANS endpoints, this study examined the direct effects of photoperiod on integrated ANS function. To test the hypothesis that short day lengths increase parasympathetic and sympathetic tones, we maintained adult male Siberian hamsters (Phodopus sungorus) to either long or short photoperiods and then analyzed electrocardiogram recordings. Short day lengths increased both parasympathetic tone, as measured by respiratory sinus arrhythmia, and sympathetic control of the heart, measured with autonomic blockade. Additionally, short day lengths enhanced the withdrawal of parasympathetic control and the increase of sympathetic tone in response to acute restraint stress. Finally, these effects were discovered to be independent of circulating androgens. These data indicate that the ANS of Siberian hamsters undergoes profound changes following prolonged exposure to short winter-like day lengths.


Assuntos
Sistema Nervoso Autônomo/efeitos da radiação , Coração/inervação , Luz , Fotoperíodo , Animais , Arritmias Cardíacas/etiologia , Cricetinae , Eletrocardiografia , Masculino , Sistema Nervoso Parassimpático/efeitos da radiação , Phodopus , Estações do Ano , Sistema Nervoso Simpático/efeitos da radiação
20.
Proc Natl Acad Sci U S A ; 106(14): 5895-900, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307557

RESUMO

Social isolation has dramatic long-term physiological and psychological consequences; however, the mechanisms by which social isolation influences disease outcome are largely unknown. The purpose of the present study was to investigate the effects of social isolation on neuronal damage, neuroinflammation, and functional outcome after focal cerebral ischemia. Male mice were socially isolated (housed individually) or pair housed with an ovariectomized female before induction of stroke, via transient intraluminal middle cerebral artery occlusion (MCAO), or SHAM surgery. In these experiments, peri-ischemic social isolation decreases poststroke survival rate and exacerbates infarct size and edema development. The social influence on ischemic damage is accompanied by an altered neuroinflammatory response; specifically, central interleukin-6 (IL-6) signaling is down-regulated, whereas peripheral IL-6 is up-regulated, in isolated relative to socially housed mice. In addition, intracerebroventricular injection of an IL-6 neutralizing antibody (10 ng) eliminates social housing differences in measures of ischemic outcome. Taken together, these data suggest that central IL-6 is an important mediator of social influences on stroke outcome.


Assuntos
Isquemia Encefálica/patologia , Inflamação/etiologia , Interleucina-6/fisiologia , Isolamento Social , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/etiologia , Feminino , Infarto da Artéria Cerebral Média , Interleucina-6/análise , Masculino , Camundongos , Neurônios/patologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA