Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 242(0): 193-211, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36189732

RESUMO

A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts show poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1 : 1 ß-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, with the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heat of mixing was calculated for a variety of alloy compositions with high values determined for both PdZn and Pd2Ga alloys, at ca. -0.6 eV per atom and ca. -0.8 eV per atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa, when in the presence of Ga2O3.

2.
Angew Chem Int Ed Engl ; 62(20): e202301239, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36788107

RESUMO

Despite extensive efforts to develop high-performance H2 evolution catalysts, this remains a major challenge. Here, we demonstrate the use of Cd/Pt precursor solutions for significant photocatalytic H2 production (154.7 mmol g-1 h-1 ), removing the need for a pre-synthesized photocatalyst. In addition, we also report simultaneous in situ synthesis of Pt single-atoms anchored CdS nanoparticles (PtSA -CdSIS ) during photoirradiation. The highly dispersed in situ incorporation of extensive Pt single atoms on CdSIS enables the enhancement of active sites and suppresses charge recombination, which results in exceptionally high solar-to-hydrogen conversion efficiency of ≈1 % and an apparent quantum yield of over 91 % (365 nm) for H2 production. Our work not only provides a promising strategy for maximising H2 production efficiency but also provides a green process for H2 production and the synthesis of highly photoactive PtSA -CdSIS nanoparticles.

3.
Nanoscale ; 16(22): 10827-10832, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38768221

RESUMO

In this study, aberration-corrected scanning transmission electron microscopy is employed to investigate the morphology of Au clusters formed from the aggregation of single atoms sputtered onto an amorphous carbon surface. The morphologies of surface-assembled clusters of N > 100 atoms are referenced against the morphologies of size-selected clusters determined from previously published results. We observe that surface-assembled clusters (at the conditions employed here) are approximately spherical in shape. The structural isomers of the imaged clusters have also been identified, and the distribution of structural types is broadly in agreement with those from size-selected cluster deposition sources. For clusters of approximately 147 atoms, we find a preference for icosahedra over decahedra and truncated octahedra, but at this size there is a high proportion of unidentified/amorphous structures. At around 309 atoms, we find a preference for decahedra over icosahedra and truncated octahedra, but over half the structures remain unidentifiable/amorphous. For sizes above approximately 561 atoms we are able to identify most of the structures, and find decahedra are still the most favoured, although in competition with single-crystal fcc morphologies. The similarity in structure between surface-assembled and size-selected clusters from a cluster source provides evidence of the relevance of size-selected cluster studies to clusters synthesised by other, industrially relevant, methodologies.

4.
Nanoscale Horiz ; 9(1): 143-147, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37877366

RESUMO

The multi-dimensional potential energy surface (PES) of a nanoparticle, such as a bare cluster of metal atoms, controls both the structure and dynamic behaviour of the particle. These properties are the subject of numerous theoretical simulations. However, quantitative experimental measurements of critical PES parameters are needed to regulate the models employed in the theoretical work. Experimental measurements of parameters are currently few in number, while model parameters taken from bulk systems may not be suitable for nanosystems. Here we describe a new measurement methodology, in which the isomer structures of a single deposited nanocluster are obtained frame-by-frame in an aberration-corrected scanning transmission electron microscope (ac-STEM) in high angle annular dark field (HAADF) mode. Several gold clusters containing 309 ± 15 atoms were analysed individually after deposition from a mass-selected cluster source onto an amorphous carbon film. The main isomers identified are icosahedral (Ih), decahedral (Dh) and face-centred-cubic (fcc) (the bulk structure), alongside many amorphous (glassy) structures. The results, which are broadly consistent with static ac-STEM measurements of an ensemble of such clusters, open the way to dynamic measurements of many different nanoparticles of diverse sizes, shapes and compositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA