Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bone Miner Res ; 38(12): 1856-1866, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37747147

RESUMO

Vertebral fractures (VFs) are the hallmark of osteoporosis, being one of the most frequent types of fragility fracture and an early sign of the disease. They are associated with significant morbidity and mortality. VFs are incidentally found in one out of five imaging studies, however, more than half of the VFs are not identified nor reported in patient computed tomography (CT) scans. Our study aimed to develop a machine learning algorithm to identify VFs in abdominal/chest CT scans and evaluate its performance. We acquired two independent data sets of routine abdominal/chest CT scans of patients aged 50 years or older: a training set of 1011 scans from a non-interventional, prospective proof-of-concept study at the Universitair Ziekenhuis (UZ) Brussel and a validation set of 2000 subjects from an observational cohort study at the Hospital of Holbaek. Both data sets were externally reevaluated to identify reference standard VF readings using the Genant semiquantitative (SQ) grading. Four independent models have been trained in a cross-validation experiment using the training set and an ensemble of four models has been applied to the external validation set. The validation set contained 15.3% scans with one or more VF (SQ2-3), whereas 663 of 24,930 evaluable vertebrae (2.7%) were fractured (SQ2-3) as per reference standard readings. Comparison of the ensemble model with the reference standard readings in identifying subjects with one or more moderate or severe VF resulted in an area under the receiver operating characteristic curve (AUROC) of 0.88 (95% confidence interval [CI], 0.85-0.90), accuracy of 0.92 (95% CI, 0.91-0.93), kappa of 0.72 (95% CI, 0.67-0.76), sensitivity of 0.81 (95% CI, 0.76-0.85), and specificity of 0.95 (95% CI, 0.93-0.96). We demonstrated that a machine learning algorithm trained for VF detection achieved strong performance on an external validation set. It has the potential to support healthcare professionals with the early identification of VFs and prevention of future fragility fractures. © 2023 UCB S.A. and The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Estudos Prospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/complicações , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Aprendizado de Máquina , Minerais , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/complicações , Densidade Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA