Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(2): e1006862, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432456

RESUMO

Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (LeX) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the LeX glycan in vitro when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to LeX. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.


Assuntos
Toxina da Cólera/toxicidade , Gangliosídeo G(M1)/fisiologia , Animais , Células Cultivadas , Gangliosídeo G(M1)/metabolismo , Glicosilação , Células HL-60 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Ratos , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
Glycoconj J ; 32(6): 393-412, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26104834

RESUMO

As a part of a systematic investigation of the species-specific expression of glycosphingolipids, acid and non-acid glycosphingolipids were isolated from three small intestines and one large intestine of the moose (Alces alces). The glycosphingolipids were characterized by binding of monoclonal antibodies, lectins and bacteria in chromatogram binding assays, and by mass spectrometry. The non-acid fractions were complex mixtures, and all had glycosphingolipids belonging to the lacto- and neolactoseries (lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, Galα3-Le(x) hexaosylceramide, and lacto-neolactohexaosylceramide), globo-series (globotriaosylceramide and globotetraosylceramide), and isogloboseries (isoglobotriaosylceramide). Penta- and heptaglycosylceramides with terminal Galili determinants were also characterized. Furthermore, glycosphingolipids with terminal blood group O determinants (H triaosylceramide, H type 2 pentaosylceramide, H type 1 penta- and heptaosylceramide) were characterized in two of the moose small intestines, and in the one large intestine, while the third small intestine had glycosphingolipids with terminal blood group A determinants (A tetraosylceramide, A type 1 hexa- and octaosylceramide, A dodecaosylceramide). The acid glycosphingolipid fractions of moose small and large intestine contained sulfatide, and the gangliosides GM3, GD3, GD1a, GD1b, and also NeuGc and NeuAc variants of the Sd(a) ganglioside and the sialyl-globopenta/SSEA-4 ganglioside. In humans, the NeuAc-globopenta/SSEA-4 ganglioside is a marker of embryonic and adult stem cells, and is also expressed in several human cancers. This is the first time sialyl-globopentaosylceramide/SSEA-4 has been characterized in a fully differentiated normal tissue, and also the first time NeuGc-globopentaosylceramide has been characterized.


Assuntos
Glicoesfingolipídeos/metabolismo , Mucosa Intestinal/metabolismo , Ruminantes/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Sequência de Carboidratos , Bovinos , Cromatografia Líquida , Cromatografia em Camada Fina , Glicoesfingolipídeos/química , Cavalos , Lectinas/metabolismo , Dados de Sequência Molecular , Oligossacarídeos/química , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
3.
J Med Chem ; 61(14): 6293-6307, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29920098

RESUMO

Previous studies identified an adamantane dipeptide piperazine 3.47 that inhibits Ebola virus (EBOV) infection by targeting the essential receptor Niemann-Pick C1 (NPC1). The physicochemical properties of 3.47 limit its potential for testing in vivo. Optimization by improving potency, reducing hydrophobicity, and replacing labile moieties identified 3.47 derivatives with improved in vitro ADME properties that are also highly active against EBOV infection, including when tested in the presence of 50% normal human serum (NHS). In addition, 3A4 was identified as the major cytochrome P450 isoform that metabolizes these compounds, and accordingly, mouse microsome stability was significantly improved when tested in the presence of the CYP3A4 inhibitor ritonavir that is approved for clinical use as a booster of anti-HIV drugs. Oral administration of the EBOV inhibitors with ritonavir resulted in a pharmacokinetic profile that supports a b.i.d. dosing regimen for efficacy studies in mice.


Assuntos
Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Ésteres/química , Ésteres/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células Vero
4.
Elife ; 4: e09545, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26512888

RESUMO

Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera.


Assuntos
Toxina da Cólera/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Gangliosídeo G(M1)/metabolismo , Glicosilação , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA