RESUMO
Polyhydroxybutyrate (PHB) is known for wide applications, biocompatibility, and degradability; however, it cannot be commercialized due to conventional recovery using solvents. The present study employed mechanical cell-disruption methods, such as Pestle and mortar, sonication, and glass bead vortexing, for solvent-free extraction of PHA from Bacillus sp. Different time intervals were set for grinding (5, 10, 15 min), sonicating (1, 3 and 5 min), and vortexing (2, 5 and 8 g glass beads with 5, 10 and 15 min each) hence studying their effect on cell lysis to release PHA. Tris buffer containing phenylmethyl sulfonyl fluoride (PMSF) (20 mM Tris-HCl, pH 8.0, 1 mM PMSF) was employed as a lysis buffer to study its action over Bacillus cells. Its presence was checked with the above methods in cell lysis. Sonicating cells for 5 min in the presence of lysis buffer achieved a maximum PHA yield of 45%. Cell lysis using lysis buffer yielded 35% PHA when vortexing with 5 g glass beads for 15 min. Grinding cells for 15 min showed a maximum yield of 34% but lacked a lysis buffer. The overall results indicated that the action of lysis buffer and physical extraction methods improved PHA yield by %. Therefore, the study sought to evaluate the feasibility of applying laboratory methods for cell disruption. These methods can showcase possible opportunities in large-scale applications. The polymer yield results were compared with standard sodium hypochlorite extraction. Confirmation of obtained polymers as polyhydroxy butyrate (PHB) was made through FTIR and 1HNMR characterization.