Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Neurosci ; 23(6): 121, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38940096

RESUMO

BACKGROUND: Neurofeedback is a non-invasive brain training technique used to enhance and treat hyperactivity disorder by altering the patterns of brain activity. Nonetheless, the extent of enhancement by neurofeedback varies among individuals/patients and many of them are irresponsive to this treatment technique. Therefore, several studies have been conducted to predict the effectiveness of neurofeedback training including the theta/beta protocol with a specific emphasize on slow cortical potential (SCP) before initiating treatment, as well as examining SCP criteria according to age and sex criteria in diverse populations. While some of these studies failed to make accurate predictions, others have demonstrated low success rates. This study explores functional connections within various brain lobes across different frequency bands of electroencephalogram (EEG) signals and the value of phase locking is used to predict the potential effectiveness of neurofeedback treatment before its initiation. METHODS: This study utilized EEG data from the Mendelian database. In this database, EEG signals were recorded during neurofeedback sessions involving 60 hyperactive students aged 7-14 years, irrespective of sex. These students were categorized into treatable and non-treatable. The proposed method includes a five-step algorithm. Initially, the data underwent preprocessing to reduce noise using a multi-stage filtering process. The second step involved extracting alpha and beta frequency bands from the preprocessed EEG signals, with a particular emphasis on the EEG recorded from sessions 10 to 20 of neurofeedback therapy. In the third step, the method assessed the disparity in brain signals between the two groups by evaluating functional relationships in different brain lobes using the phase lock value, a crucial data characteristic. The fourth step focused on reducing the feature space and identifying the most effective and optimal electrodes for neurofeedback treatment. Two methods, the probability index (p-value) via a t-test and the genetic algorithm, were employed. These methods showed that the optimal electrodes were in the frontal lobe and central cerebral cortex, notably channels C3, FZ, F4, CZ, C4, and F3, as they exhibited significant differences between the two groups. Finally, in the fifth step, machine learning classifiers were applied, and the results were combined to generate treatable and non-treatable labels for each dataset. RESULTS: Among the classifiers, the support vector machine and the boosting method demonstrated the highest accuracy when combined. Consequently, the proposed algorithm successfully predicted the treatability of individuals with hyperactivity in a short time and with limited data, achieving an accuracy of 90.6% in the neurofeedback method. Additionally, it effectively identified key electrodes in neurofeedback treatment, reducing their number from 32 to 6. CONCLUSIONS: This study introduces an algorithm with a 90.6% accuracy for predicting neurofeedback treatment outcomes in hyperactivity disorder, significantly enhancing treatment efficiency by identifying optimal electrodes and reducing their number from 32 to 6. The proposed method enables the prediction of patient responsiveness to neurofeedback therapy without the need for numerous sessions, thus conserving time and financial resources.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Eletroencefalografia , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Adolescente , Masculino , Feminino , Criança , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Ondas Encefálicas/fisiologia , Resultado do Tratamento
2.
Neuroimage ; 279: 120320, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586444

RESUMO

Emotion regulation plays a key role in human behavior and overall well-being. Neurofeedback is a non-invasive self-brain training technique used for emotion regulation to enhance brain function and treatment of mental disorders through behavioral changes. Previous neurofeedback research often focused on using activity from a single brain region as measured by fMRI or power from one or two EEG electrodes. In a new study, we employed connectivity-based EEG neurofeedback through recalling positive autobiographical memories and simultaneous fMRI to upregulate positive emotion. In our novel approach, the feedback was determined by the coherence of EEG electrodes rather than the power of one or two electrodes. We compared the efficiency of this connectivity-based neurofeedback to traditional activity-based neurofeedback through multiple experiments. The results showed that connectivity-based neurofeedback effectively improved BOLD signal change and connectivity in key emotion regulation regions such as the amygdala, thalamus, and insula, and increased EEG frontal asymmetry, which is a biomarker for emotion regulation and treatment of mental disorders such as PTSD, anxiety, and depression and coherence among EEG channels. The psychometric evaluations conducted both before and after the neurofeedback experiments revealed that participants demonstrated improvements in enhancing positive emotions and reducing negative emotions when utilizing connectivity-based neurofeedback, as compared to traditional activity-based and sham neurofeedback approaches. These findings suggest that connectivity-based neurofeedback may be a superior method for regulating emotions and could be a useful alternative therapy for mental disorders, providing individuals with greater control over their brain and mental functions.


Assuntos
Regulação Emocional , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Eletroencefalografia
3.
Psychiatry Res Neuroimaging ; 337: 111764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043370

RESUMO

BACKGROUND: Forecasting the efficacy of repetitive transcranial magnetic stimulation (rTMS) therapy can lead to substantial time and cost savings by preventing futile treatments. To achieve this objective, we've formulated a machine learning approach aimed at categorizing patients with major depressive disorder (MDD) into two groups: individuals who respond (R) positively to rTMS treatment and those who do not respond (NR). METHODS: Preceding the commencement of treatment, we obtained resting-state EEG data from 106 patients diagnosed with MDD, employing 32 electrodes for data collection. These patients then underwent a 7-week course of rTMS therapy, and 54 of them exhibited positive responses to the treatment. Employing Independent Component Analysis (ICA) on the EEG data, we successfully pinpointed relevant brain sources that could potentially serve as markers of neural activity within the dorsolateral prefrontal cortex (DLPFC). These identified sources were further scrutinized to estimate the sources of activity within the sensor domain. Then, we integrated supplementary physiological data and implemented specific criteria to yield more realistic estimations when compared to conventional EEG analysis. In the end, we selected components corresponding to the DLPFC region within the sensor domain. Features were derived from the time-series data of these relevant independent components. To identify the most significant features, we used Reinforcement Learning (RL). In categorizing patients into two groups - R and NR to rTMS treatment - we utilized three distinct classification algorithms including K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). We assessed the performance of these classifiers through a ten-fold cross-validation method. Additionally, we conducted a statistical test to evaluate the discriminative capacity of these features between responders and non-responders, opening the door for further exploration in this field. RESULTS: We identified EEG features that can anticipate the response to rTMS treatment. The most robust discriminators included EEG beta power, the sum of bispectrum diagonal elements in the delta and beta frequency bands. When these features were combined into a single vector, the classification of responders and non-responders achieved impressive performance, with an accuracy of 95.28 %, specificity at 94.23 %, sensitivity reaching 96.29 %, and precision standing at 94.54 %, all achieved using SVM. CONCLUSIONS: The results of this study suggest that the proposed approach, utilizing power, non-linear, and bispectral features extracted from relevant independent component time-series, has the capability to forecast the treatment outcome of rTMS for MDD patients based solely on a single pre-treatment EEG recording session. The achieved findings demonstrate the superior performance of our method compared to previous techniques.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Transtorno Depressivo Maior/terapia , Eletroencefalografia/métodos , Depressão , Córtex Pré-Frontal/fisiologia
4.
Pain ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39167466

RESUMO

ABSTRACT: Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulatory technique with the potential to provide pain relief. However, tDCS effects on pain are variable across existing studies, possibly related to differences in stimulation protocols and expectancy effects. We investigated the independent and joint effects of contralateral motor cortex tDCS (anodal vs cathodal) and socially induced expectations (analgesia vs hyperalgesia) about tDCS on thermal pain. We employed a double-blind, randomized 2 × 2 factorial cross-over design, with 5 sessions per participant on separate days. After calibration in Session 1, Sessions 2 to 5 crossed anodal or cathodal tDCS (20 minutes 2 mA) with socially induced analgesic or hyperalgesic expectations, with 6 to 7 days between the sessions. The social manipulation involved videos of previous "participants" (confederates) describing tDCS as inducing a low-pain state ("analgesic expectancy") or hypersensitivity to sensation ("hyperalgesic expectancy"). Anodal tDCS reduced pain compared with cathodal stimulation (F(1,19.9) = 19.53, P < 0.001, Cohen d = 0.86) and analgesic expectancy reduced pain compared with hyperalgesic expectancy (F(1,19.8) = 5.62, P = 0.027, Cohen d = 0.56). There was no significant interaction between tDCS and social expectations. Effects of social suggestions were related to expectations, whereas tDCS effects were unrelated to expectancies. The observed additive effects provide novel evidence that tDCS and socially induced expectations operate through independent processes. They extend clinical tDCS studies by showing tDCS effects on controlled nociceptive pain independent of expectancy effects. In addition, they show that social suggestions about neurostimulation effects can elicit potent placebo effects.

5.
Front Hum Neurosci ; 17: 1174104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881690

RESUMO

Introduction: Emotions play a critical role in human communication, exerting a significant influence on brain function and behavior. One effective method of observing and analyzing these emotions is through electroencephalography (EEG) signals. Although numerous studies have been dedicated to emotion recognition (ER) using EEG signals, achieving improved accuracy in recognition remains a challenging task. To address this challenge, this paper presents a deep-learning approach for ER using EEG signals. Background: ER is a dynamic field of research with diverse practical applications in healthcare, human-computer interaction, and affective computing. In ER studies, EEG signals are frequently employed as they offer a non-invasive and cost-effective means of measuring brain activity. Nevertheless, accurately identifying emotions from EEG signals poses a significant challenge due to the intricate and non-linear nature of these signals. Methods: The present study proposes a novel approach for ER that encompasses multiple stages, including feature extraction, feature selection (FS) employing clustering, and classification using Dual-LSTM. To conduct the experiments, the DEAP dataset was employed, wherein a clustering technique was applied to Hurst's view and statistical features during the FS phase. Ultimately, Dual-LSTM was employed for accurate ER. Results: The proposed method achieved a remarkable accuracy of 97.5% in accurately classifying emotions across four categories: arousal, valence, liking/disliking, dominance, and familiarity. This high level of accuracy serves as strong evidence for the effectiveness of the deep-learning approach to emotion recognition (ER) utilizing EEG signals. Conclusion: The deep-learning approach proposed in this paper has shown promising results in emotion recognition using EEG signals. This method can be useful in various applications, such as developing more effective therapies for individuals with mood disorders or improving human-computer interaction by allowing machines to respond more intelligently to users' emotional states. However, further research is needed to validate the proposed method on larger datasets and to investigate its applicability to real-world scenarios.

6.
Front Hum Neurosci ; 16: 933538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188168

RESUMO

Joint Analysis of EEG and fMRI datasets can bring new insight into brain mechanisms. In this paper, we employed the recently introduced Correlated Coupled Tensor Matrix Factorization (CCMTF) method for analysis of the emotion regulation paradigm based on EEG frontal asymmetry neurofeedback in the alpha frequency band with simultaneous fMRI. CCMTF method assumes that the co-variations of the common dimension (temporal dimension) between EEG and fMRI are correlated and not necessarily identical. The results of the CCMTF method suggested that EEG and fMRI had similar covariations during the transition of brain activities from resting states to task (view and upregulation) states and these covariations followed an increasing trend. The fMRI shared spatial component showed activations in the limbic system, DLPFC, OFC, and VLPC regions, which were consistent with the previous studies and were linked to EEG frequency patterns in the range of 1-15 Hz with a correlation value close to 0.75. The estimated regions from the CCMTF method were then used as the candidate nodes for dynamic functional connectivity (dFC) analysis, in which the changes in connectivity from view to upregulation states were examined. The results of the dFC analysis were compared with a Normalized Mutual information (NMI) based approach in two different frequency ranges (1-15 and 15-40 Hz) as the NMI method was applied to the vectors of dFC nodes of EEG and fMRI data. The results of the two methods illustrated that the relation between EEG and fMRI datasets was mostly in the frequency range of 1-15 Hz. These relations were both in the brain activations and the dFCs between the two modalities. This paper suggests that the CCMTF method is a capable approach for extracting the shared information between EEG and fMRI data and can reveal new information about brain functions and their connectivity without solving the EEG inverse problem or analyzing different frequency bands.

7.
Front Hum Neurosci ; 16: 988890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684847

RESUMO

Despite the existence of several emotion regulation studies using neurofeedback, interactions among a small number of regions were evaluated, and therefore, further investigation is needed to understand the interactions of the brain regions involved in emotion regulation. We implemented electroencephalography (EEG) neurofeedback with simultaneous functional magnetic resonance imaging (fMRI) using a modified happiness-inducing task through autobiographical memories to upregulate positive emotion. Then, an explorative analysis of whole brain regions was done to understand the effect of neurofeedback on brain activity and the interaction of whole brain regions involved in emotion regulation. The participants in the control and experimental groups were asked to do emotion regulation while viewing positive images of autobiographical memories and getting sham or real (based on alpha asymmetry) EEG neurofeedback, respectively. The proposed multimodal approach quantified the effects of EEG neurofeedback in changing EEG alpha power, fMRI blood oxygenation level-dependent (BOLD) activity of prefrontal, occipital, parietal, and limbic regions (up to 1.9% increase), and functional connectivity in/between prefrontal, parietal, limbic system, and insula in the experimental group. New connectivity links were identified by comparing the brain functional connectivity between experimental conditions (Upregulation and View blocks) and also by comparing the brain connectivity of the experimental and control groups. Psychometric assessments confirmed significant changes in positive and negative mood states in the experimental group by neurofeedback. Based on the exploratory analysis of activity and connectivity among all brain regions involved in emotion regions, we found significant BOLD and functional connectivity increases due to EEG neurofeedback in the experimental group, but no learning effect was observed in the control group. The results reveal several new connections among brain regions as a result of EEG neurofeedback which can be justified according to emotion regulation models and the role of those regions in emotion regulation and recalling positive autobiographical memories.

8.
Brain Connect ; 10(6): 302-315, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32458692

RESUMO

Background: Emotion regulation by neurofeedback involves interactions among multiple brain regions, including prefrontal cortex and subcortical regions. Previous studies focused on connections of specific brain regions such as amygdala with other brain regions. New method: Electroencephalography (EEG) neurofeedback is used to upregulate positive emotion by retrieving positive autobiographical memories and functional magnetic resonance imaging (fMRI) data acquired simultaneously. A global data-driven approach, group independent component analysis, is applied to the fMRI data and functional network connectivity (FNC) estimated. Results: The proposed approach identified all functional networks engaged in positive autobiographical memories and evaluated effects of neurofeedback. The results revealed two pairs of networks with significantly different functional connectivity among emotion regulation blocks (relative to other blocks of the experiment) and between experimental and control groups (false discovery rate corrected for multiple comparisons, q = 0.05). FNC distribution showed significant connectivity differences between neurofeedback blocks and other blocks, revealing more synchronized brain networks during neurofeedback. Comparison with Existing Methods: Although the results are consistent with those of previous model-based studies, some of the connections found in this study were not found previously. These connections are between (a) occipital and other regions including limbic system/sublobar, prefrontal/frontal cortex, inferior parietal, and middle temporal gyrus and (b) posterior cingulate cortex and hippocampus. Conclusions: This study provided a global insight into brain connectivity for emotion regulation. The brain network interactions may be used to develop connectivity-based neurofeedback methods and alternative therapeutic approaches, which may be more effective than the traditional activity-based neurofeedback methods.


Assuntos
Encéfalo/fisiologia , Regulação Emocional/fisiologia , Neurorretroalimentação/métodos , Adulto , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico/métodos , Conectoma/métodos , Eletroencefalografia , Emoções/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/fisiologia , Descanso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA