Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8124, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065985

RESUMO

Immunoglobulin A (IgA) is acknowledged to play a role in the defence of the mucosal barrier by coating microorganisms. Surprisingly, IgA-deficient humans exhibit few infection-related complications, raising the question if the more specific IgG may help IgM in compensating for the lack of IgA. Here we employ a cohort of IgA-deficient humans, each paired with IgA-sufficient household members, to investigate multi-Ig bacterial coating. In IgA-deficient humans, IgM alone, and together with IgG, recapitulate coating of most bacterial families, despite an overall 3.6-fold lower Ig-coating. Bacterial IgG coating is dominated by IgG1 and IgG4. Single-IgG2 bacterial coating is sparse and linked to enhanced Escherichia coli load and TNF-α. Although single-IgG2 coating is 1.6-fold more prevalent in IgA deficiency than in healthy controls, it is 2-fold less prevalent than in inflammatory bowel disease. Altogether we demonstrate that IgG assists IgM in coating of most bacterial families in the absence of IgA and identify single-IgG2 bacterial coating as an inflammatory marker.


Assuntos
Deficiência de IgA , Humanos , Bactérias , Escherichia coli , Deficiência de IgA/imunologia , Deficiência de IgA/microbiologia , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
2.
Toxins (Basel) ; 11(1)2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658491

RESUMO

Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.


Assuntos
Mordeduras e Picadas/terapia , Proteínas de Transporte/uso terapêutico , Toxinas Biológicas/toxicidade , Animais , Anticorpos Monoclonais/uso terapêutico , Antitoxinas/uso terapêutico , Humanos , Imunização Passiva
3.
Toxicon ; 167: 67-75, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31173790

RESUMO

Snakebite envenoming is a devastating Neglected Tropical Disease, the treatment of which has seen relatively little innovation since the invention of antivenom serotherapy in 1894. Current antivenoms have been and continue to be invaluable in saving thousands of lives. However, these medicines are associated with a number of drawbacks pertaining to availability, safety, and efficacy. Fortunately, with the advent of novel methodologies, such as antibody discovery technologies, high-throughput drug discovery approaches, and improved methods for protein engineering, we are starting to see scientific advances in the field. This review presents relevant engineering and design considerations for exploiting these methodologies to develop next-generation antivenoms with improved safety, efficacy, and affordability. The pros and cons of different treatment modalities are discussed with regards to immunogenicity, the suitability of preclinical efficacy assays, availability of discovery methods, economic viability of production schemes, and possible regulatory approval paths.


Assuntos
Antivenenos/química , Desenho de Fármacos , Mordeduras de Serpentes/tratamento farmacológico , Animais , Antivenenos/efeitos adversos , Antivenenos/uso terapêutico , Controle de Medicamentos e Entorpecentes , Humanos , Venenos de Serpentes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA