Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 33(32): 13101-11, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926264

RESUMO

Spinal cord injury results in distant pathology around putative locomotor networks that may jeopardize the recovery of locomotion. We previously showed that activated microglia and increased cytokine expression extend at least 10 segments below the injury to influence sensory function. Matrix metalloproteinase-9 (MMP-9) is a potent regulator of acute neuroinflammation. Whether MMP-9 is produced remote to the injury or influences locomotor plasticity remains unexamined. Therefore, we characterized the lumbar enlargement after a T9 spinal cord injury in C57BL/6 (wild-type [WT]) and MMP-9-null (knock-out [KO]) mice. Within 24 h, resident microglia displayed an activated phenotype alongside increased expression of progelatinase MMP-3 in WT mice. By 7 d, increases in active MMP-9 around lumbar vasculature and production of proinflammatory TNF-α were evident. Deletion of MMP-9 attenuated remote microglial activation and restored TNF-α expression to homeostatic levels. To determine whether MMP-9 impedes locomotor plasticity, we delivered lumbar-focused treadmill training in WT and KO mice during early (2-9 d) or late (35-42 d) phases of recovery. Robust behavioral improvements were observed by 7 d, when only trained KO mice stepped in the open field. Locomotor improvements were retained for 4 weeks as identified using state of the art mouse kinematics. Neither training nor MMP-9 depletion alone promoted recovery. The same intervention delivered late was ineffective, suggesting that lesion site sparing is insufficient to facilitate activity-based training and recovery. Our work suggests that by attenuating remote mechanisms of inflammation, acute treadmill training can harness endogenous spinal plasticity to promote robust recovery.


Assuntos
Locomoção/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/enzimologia , Animais , Fenômenos Biomecânicos , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Teste de Esforço , Região Lombossacral , Metaloproteinase 2 da Matriz , Metaloproteinase 3 da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Fibras Nervosas Mielinizadas/patologia , Estatísticas não Paramétricas , Fator de Necrose Tumoral alfa/metabolismo
2.
Exp Neurol ; 346: 113853, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464653

RESUMO

Experience-dependent white matter plasticity offers new potential for rehabilitation-induced recovery after neurotrauma. This first-in-human translational experiment combined myelin water imaging in humans and genetic fate-mapping of oligodendrocyte lineage cells in mice to investigate whether downhill locomotor rehabilitation that emphasizes eccentric muscle actions promotes white matter plasticity and recovery in chronic, incomplete spinal cord injury (SCI). In humans, of 20 individuals with SCI that enrolled, four passed the imaging screen and had myelin water imaging before and after a 12-week (3 times/week) downhill locomotor treadmill training program (SCI + DH). One individual was excluded for imaging artifacts. Uninjured control participants (n = 7) had two myelin water imaging sessions within the same day. Changes in myelin water fraction (MWF), a histopathologically-validated myelin biomarker, were analyzed in a priori motor learning and non-motor learning brain regions and the cervical spinal cord using statistical approaches appropriate for small sample sizes. PDGFRα-CreERT2:mT/mG mice, that express green fluorescent protein on oligodendrocyte precursor cells and subsequent newly-differentiated oligodendrocytes upon tamoxifen-induced recombination, were either naive (n = 6) or received a moderate (75 kilodyne), contusive SCI at T9 and were randomized to downhill training (n = 6) or unexercised groups (n = 6). We initiated recombination 29 days post-injury, seven days prior to downhill training. Mice underwent two weeks of daily downhill training on the same 10% decline grade used in humans. Between-group comparison of functional (motor and sensory) and histological (oligodendrogenesis, oligodendroglial/axon interaction, paranodal structure) outcomes occurred post-training. In humans with SCI, downhill training increased MWF in brain motor learning regions (postcentral, precuneus) and mixed motor and sensory tracts of the ventral cervical spinal cord compared to control participants (P < 0.05). In mice with thoracic SCI, downhill training induced oligodendrogenesis in cervical dorsal and lateral white matter, increased axon-oligodendroglial interactions, and normalized paranodal structure in dorsal column sensory tracts (P < 0.05). Downhill training improved sensorimotor recovery in mice by normalizing hip and knee motor control and reducing hyperalgesia, both of which were associated with new oligodendrocytes in the cervical dorsal columns (P < 0.05). Our findings indicate that eccentric-focused, downhill rehabilitation promotes white matter plasticity and improved function in chronic SCI, likely via oligodendrogenesis in nervous system regions activated by the training paradigm. Together, these data reveal an exciting role for eccentric training in white matter plasticity and sensorimotor recovery after SCI.


Assuntos
Reabilitação Neurológica/métodos , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/reabilitação , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Doença Crônica , Teste de Esforço/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
3.
J Neurotrauma ; 36(6): 937-949, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30014767

RESUMO

Spinal cord injury (SCI) produces a toxic inflammatory microenvironment that negatively affects plasticity and recovery. Recently, we showed glial activation and peripheral myeloid cell infiltration extending beyond the epicenter through the remote lumbar cord after thoracic SCI. The presence and role of infiltrating monocytes is important, especially in the lumbar cord where locomotor central pattern generators are housed. Therefore, we compared the inflammatory profile of resident microglia and peripheral myeloid cells after SCI. Bone marrow chimeras received midthoracic contusive SCI, and trafficking was determined 1-7 days later. Fluorescence-activated cell (FAC) sorting showed similar infiltration timing of both neutrophils and macrophages in epicenter and lumbar regions. While neutrophil numbers were attenuated by day 3, macrophages remained unchanged at day 7, suggesting that macrophages have important long-term influence on the microenvironment. Nanostring gene array identified a strong proinflammatory profile of infiltrating macrophages relative to microglia at both epicenter and lumbar sites. Macrophages had elevated expression of inflammatory cytokines (IL-1ß, IFNγ), chemokines (CCL2, CXCL2), mediators (COX-1, MMP-9), and receptors (CCR2, Ly6C), and decreased expression of growth promoting genes (GDNF, BDNF). Importantly, lumbar macrophages had elevated expression of active trafficking genes (CCR2, l-selectin, MMP-9) compared with epicenter macrophages. Further, acute rehabilitation exacerbated the inflammatory profile of infiltrated macrophages in the lumbar cord. Such high inflammatory potential and negative response to rehabilitation of infiltrating macrophages within lumbar locomotor central pattern generators likely impedes activity-dependent recovery. Therefore, limiting active trafficking of macrophages into the lumbar cord identifies a novel target for SCI therapies to improve locomotion.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Animais , Quimiotaxia de Leucócito/imunologia , Feminino , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/metabolismo
4.
J Neurotrauma ; 35(18): 2167-2182, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29385890

RESUMO

Sensorimotor recovery after spinal cord injury (SCI) is of utmost importance to injured individuals and will rely on improved understanding of SCI pathology and recovery. Novel transgenic mouse lines facilitate discovery, but must be understood to be effective. The purpose of this study was to characterize the sensory and motor behavior of a common transgenic mouse line (Thy1-GFP-M) before and after SCI. Thy1-GFP-M positive (TG+) mice and their transgene negative littermates (TG-) were acquired from two sources (in-house colony, n = 32, Jackson Laboratories, n = 4). C57BL/6J wild-type (WT) mice (Jackson Laboratories, n = 10) were strain controls. Moderate-severe T9 contusion (SCI) or transection (TX) occurred in TG+ (SCI, n = 25, TX, n = 5), TG- (SCI, n = 5), and WT (SCI, n = 10) mice. To determine responsiveness to rehabilitation, a cohort of TG+ mice with SCI (n = 4) had flat treadmill (TM) training 42-49 days post-injury (dpi). To characterize recovery, we performed Basso Mouse Scale, Grid Walk, von Frey Hair, and Plantar Heat Testing before and out to day 42 post-SCI. Open field locomotion was significantly better in the Thy1 SCI groups (TG+ and TG-) compared with WT by 7 dpi (p < 0.01) and was maintained through 42 dpi (p < 0.01). These unexpected locomotor gains were not apparent during grid walking, indicating severe impairment of precise motor control. Thy1 derived mice were hypersensitive to mechanical stimuli at baseline (p < 0.05). After SCI, mechanical hyposensitivity emerged in Thy1 derived groups (p < 0.001), while thermal hyperalgesia occurred in all groups (p < 0.001). Importantly, consistent findings across TG+ and TG- groups suggest that the effects are mediated by the genetic background rather than transgene manipulation itself. Surprisingly, TM training restored mechanical and thermal sensation to baseline levels in TG+ mice with SCI. This behavioral profile and responsiveness to chronic training will be important to consider when choosing models to study the mechanisms underlying sensorimotor recovery after SCI.


Assuntos
Comportamento Animal/fisiologia , Modelos Animais de Doenças , Traumatismos da Medula Espinal/fisiopatologia , Antígenos Thy-1/genética , Animais , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
J Neurotrauma ; 23(1): 36-54, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16430371

RESUMO

Most experimental studies of spinal cord injury (SCI) in rats damage the thoracic cord, with the consequent functional loss being due to interruption of long tracts connecting the caudal spinal cord to the rostral nervous system. Less work has been done evaluating injury to the cervical cord, even though it is the most common level of human SCI. In addition to the long tracts, the cervical spinal cord contains the sensory and motor neurons responsible for upper extremity function. The purpose of this study was to further develop a rat model of cervical spinal cord contusion injury using a modified NYU/MASCIS weight drop device. Mild (6.25 mm) and moderate (12.5 mm) C5 unilateral injuries were produced. Behavioral recovery was examined using a grooming test, a paw preference test, a walkway test (The Catwalk), and a horizontal ladder test. Histological outcome measures included sparing at the lesion epicenter, sparing throughout the extent of the lesion, quantification of myelin loss rostral and caudal to the lesion, and motor neuron counts. Compared to controls, animals receiving SCI exhibited injury severity-specific deficits in forelimb, locomotor, and hindlimb function persisting for 6-weeks post-SCI. Histological analysis revealed ipsilateral containment of the injury, and differentiation between groups on all measures except motor neuron counts. This model has many advantages: (1) minimal animal care requirements post-SCI, (2) within subject controls, (3) functional loss involves primarily the ipsilateral forelimb, and (4) it is a behavioral and histological model for both gray and white matter damage caused by contusive SCI.


Assuntos
Vias Eferentes/fisiopatologia , Neurônios Motores/patologia , Fibras Nervosas Mielinizadas/patologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Degeneração Walleriana/fisiopatologia , Animais , Morte Celular/fisiologia , Vértebras Cervicais , Avaliação da Deficiência , Modelos Animais de Doenças , Vias Eferentes/patologia , Feminino , Membro Anterior/inervação , Membro Anterior/fisiopatologia , Lateralidade Funcional/fisiologia , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/fisiopatologia , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Modelos Neurológicos , Exame Neurológico , Valor Preditivo dos Testes , Ratos , Ratos Long-Evans , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/diagnóstico , Degeneração Walleriana/patologia
6.
J Vis Exp ; (62): e3247, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22508401

RESUMO

Spinal cord injury (SCI) impairs sensory systems causing allodynia. To identify cellular and molecular causes of allodynia, sensitive and valid sensory testing in rat SCI models is needed. However, until recently, no single testing approach had been validated for SCI so that standardized methods have not been implemented across labs. Additionally, available testing methods could not be implemented acutely or when severe motor impairments existed, preventing studies of the development of SCI-induced allodynia(3). Here we present two validated sensory testing methods using von Frey Hair (VFH) monofilaments which quantify changes in tactile sensory thresholds after SCI. One test is the well-established Up-Down test which demonstrates high sensitivity and specificity across different SCI severities when tested chronically. The other test is a newly-developed dorsal VFH test that can be applied acutely after SCI when allodynia develops, prior to motor recovery. Each VFH monofilament applies a calibrated force when touched to the skin of the hind paw until it bends. In the up-down method, alternating VFHs of higher or lower forces are used on the plantar L5 dermatome to delineate flexor withdrawal thresholds. Successively higher forces are applied until withdrawal occurs then lower force VFHs are used until withdrawal ceases. The tactile threshold reflects the force required to elicit withdrawal in 50% of the stimuli. For the new test, each VFH is applied to the dorsal L5 dermatome of the paw while the rat is supported by the examiner. The VFH stimulation occurs in ascending order of force until at least 2 of 3 applications at a given force produces paw withdrawal. Tactile sensory threshold is the lowest force to elicit withdrawal 66% of the time. Acclimation, testing and scoring procedures are described. Aberrant trials that require a retest and typical trials are defined. Animal use was approved by Ohio State University Animal Care and Use Committee.


Assuntos
Limiar Sensorial/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Tato/fisiologia , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA