Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 127: 105926, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717804

RESUMO

Synthetic flavonoids with new substitution patterns have attracted attention as potential anticancer drugs. Here, twelve chalcones were synthesized and their antiproliferative activities against five human tumour cells were evaluated. This series of chalcone derivatives was characterized by the presence of an additional aromatic or heterocyclic ring linked by an ether, in the case of a benzyl radical, or an ester or amide functional group in the case of a furoyl radical. In addition, the influence on cytotoxicity by the presence of one or three methoxy groups or a 2,4-dimethoxy-3-methyl system on the B ring of the chalcone scaffold was also explored. The results revealed that the most cytotoxic chalcones contain a furoyl substituent linked by an ester or an amide through the 2'-hydroxy or the 2'-amino group of the A ring of the chalcone skeleton, with IC50 values between 0.2 ±â€¯0.1 µM and 1.3 ±â€¯0.1 µM against human leukaemia cells. The synthetic chalcone 2'-furoyloxy-4-methoxychalcone (FMC) was, at least, ten-fold more potent than the antineoplastic agent etoposide against U-937 cells and displayed less cytotoxicity against human peripheral blood mononuclear cells. Treatment of U-937 and HL-60 cells with FMC induced cell cycle arrest at the G2-M phase, an increase in the percentage of sub-G1 and annexin-V positive cells, the release of mitochondrial cytochrome c, activation of caspase and poly(ADP-ribose) polymerase cleavage. In addition, it inhibited tubulin polymerization in vitro in a concentration dependent manner. Cell death triggered by this chalcone was decreased by the pan-caspase inhibitor z-VAD-fmk and was dependent of the generation of reactive oxygen species. We conclude that this furoyloxychalcone may be useful in the development of a potential anti-leukaemia strategy.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Leucemia , Amidas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Chalcona/farmacologia , Chalconas/farmacologia , Chalconas/uso terapêutico , Ésteres/farmacologia , Células HL-60 , Humanos , Leucemia/metabolismo , Leucócitos Mononucleares/metabolismo , Relação Estrutura-Atividade
2.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066632

RESUMO

Ethanol has been shown to exhibit therapeutic properties as an ablative agent alone and in combination with thermal ablation. Ethanol may also increase sensitivity of cancer cells to certain physical and chemical antitumoral agents. The aim of our study was to assess the potential influence of nontoxic concentrations of ethanol on hyperthermia therapy, an antitumoral modality that is continuously growing and that can be combined with classical chemotherapy and radiotherapy to improve their efficiency. Human leukemia cells were included as a model in the study. The results indicated that ethanol augments the cytotoxicity of hyperthermia against U937 and HL60 cells. The therapeutic benefit of the hyperthermia/ethanol combination was associated with an increase in the percentage of apoptotic cells and activation of caspases-3, -8 and -9. Apoptosis triggered either by hyperthermia or hyperthermia/ethanol was almost completely abolished by a caspase-8 specific inhibitor, indicating that this caspase plays a main role in both conditions. The role of caspase-9 in hyperthermia treated cells acquired significance whether ethanol was present during hyperthermia since the alcohol enhanced Bid cleavage, translocation of Bax from cytosol to mitochondria, release of mitochondrial apoptogenic factors, and decreased of the levels of the anti-apoptotic factor myeloid cell leukemia-1 (Mcl-1). The enhancement effect of ethanol on hyperthermia-activated cell death was associated with a reduction in the expression of HSP70, a protein known to interfere in the activation of apoptosis at different stages. Collectively, our findings suggest that ethanol could be useful as an adjuvant in hyperthermia therapy for cancer.


Assuntos
Etanol/farmacologia , Hipertermia Induzida , Leucemia Mieloide/patologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células U937
3.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948260

RESUMO

The World Health Organization reported that approximately 324,000 new cases of melanoma skin cancer were diagnosed worldwide in 2020. The incidence of melanoma has been increasing over the past decades. Targeting apoptotic pathways is a potential therapeutic strategy in the transition to preclinical models and clinical trials. Some naturally occurring products and synthetic derivatives are apoptosis inducers and may represent a realistic option in the fight against the disease. Thus, chalcones have received considerable attention due to their potential cytotoxicity against cancer cells. We have previously reported a chalcone containing an indole and a pyridine heterocyclic rings and an α-bromoacryloylamido radical which displays potent antiproliferative activity against several tumor cell lines. In this study, we report that this chalcone is a potent apoptotic inducer for human melanoma cell lines SK-MEL-1 and MEL-HO. Cell death was associated with mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage and was prevented by a non-specific caspase inhibitor. Using SK-MEL-1 as a model, we found that the mechanism of cell death involves (i) the generation of reactive oxygen species, (ii) activation of the extrinsic and intrinsic apoptotic and mitogen-activated protein kinase pathways, (iii) upregulation of TRAIL, DR4 and DR5, (iv) downregulation of p21Cip1/WAF1 and, inhibition of the NF-κB pathway.


Assuntos
Apoptose/fisiologia , Chalconas/farmacologia , Melanoma/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular , Linhagem Celular Tumoral , Chalconas/metabolismo , Citocromos c/metabolismo , Humanos , Indóis , Melanoma/tratamento farmacológico , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Bioorg Chem ; 94: 103450, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785856

RESUMO

Synthetic flavonoids containing a naphthalene ring have attracted attention as potential cytotoxic compounds. Here, we synthesized ten chalcones and their corresponding flavanones and evaluated their antiproliferative activity against the human tumour cell line U-937. This series of chalcone derivatives was characterized by the presence of a naphthalene ring which was kept unaltered- and attached to the ß carbon of the 1-phenyl-2-propen-1-one framework. The structure-activity relationship of these chalcone derivatives and their corresponding cyclic compounds was investigated by the introduction of different substituents (methyl, methoxy, benzyloxy, chlorine) or by varying the position of the methoxy or benzyloxy groups on the A ring. The results revealed that both the chalcone containing the methoxy group at 5' position of the A ring as well as its corresponding flavanone [6-methoxy-2-(naphthalen-1-yl)chroman-4-one] were the most cytotoxic compounds, with IC50 values of 2.8 ± 0.2 and 1.3 ± 0.2 µM, respectively, against U-937 cells. This synthetic flavanone was as cytotoxic as the antitumor etoposide in U-937 cells and displayed strong cytotoxicity against additional human leukaemia cell lines, including HL-60, MOLT-3 and NALM-6. Human peripheral blood mononuclear cells were more resistant than leukaemia cells to the cytotoxic effects of the flavanone. Treatment of U-937 cells with this compound induced G2-M cell cycle arrest, an increase in sub-G1 ratio and annexin-V positive cells, mitochondrial cytochrome c release, caspase activation and poly(ADP-ribose)polymerase processing. Apoptosis induction triggered by this flavonoid was blocked by overexpression of the anti-apoptotic protein Bcl-2. This flavanone induces phosphorylation of p38 mitogen-activated protein kinases, extracellular-signal regulated kinases and c-jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK) following different kinetics. Moreover, cell death was attenuated by the inhibition of mitogen-activated extracellular kinases and JNK/SAPK and was independent of reactive oxygen species generation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavanonas/síntese química , Flavanonas/química , Humanos , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Int J Biol Sci ; 19(6): 1731-1747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063429

RESUMO

Triple-negative breast cancer (TNBC) is difficult to treat; therefore, the development of drugs directed against its oncogenic vulnerabilities is a desirable goal. Herein, we report the antitumor effects of CM728, a novel quinone-fused oxazepine, against this malignancy. CM728 potently inhibited TNBC cell viability and decreased the growth of MDA-MB-231-induced orthotopic tumors. Furthermore, CM728 exerted a strong synergistic antiproliferative effect with docetaxel in vitro and this combination was more effective than the individual treatments in vivo. Chemical proteomic approaches revealed that CM728 bound to peroxiredoxin-1 (Prdx1), thereby inducing its oxidation. Molecular docking corroborated these findings. CM728 induced oxidative stress and a multi-signal response, including JNK/p38 MAPK activation and STAT3 inhibition. Interestingly, Prdx1 downregulation mimicked these effects. Finally, CM728 led to DNA damage, cell cycle blockage at the S and G2/M phases, and the activation of caspase-dependent apoptosis. Taken together, our results identify a novel compound with antitumoral properties against TNBC. In addition, we describe the mechanism of action of this drug and provide a rationale for the use of Prdx1 inhibitors, such as CM728, alone or in combination with other drugs, for the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Docetaxel/farmacologia , Simulação de Acoplamento Molecular , Proteômica , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Chem Biol Interact ; 298: 137-145, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30576621

RESUMO

In this study, we investigated the effects of synthetic 6'-benzyloxy-4-bromo-2'-hydroxychalcone on viabilities of seven human leukaemia cells. It was cytotoxic against U-937, HL-60, K-562, NALM-6, MOLT-3 cells, and also against Bcl-2-overexpressing U-937/Bcl-2 cells and P-glycoprotein-overexpressing K-562/ADR, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. This chalcone is a potent apoptotic inducer in human leukaemia U-937 cells. Cell death was (i) mediated by the activation and the cleavage of initiator and executioner caspases and poly(ADP-ribose) polymerase; (ii) prevented by the pan-caspase inhibitor z-VAD-fmk, and by the selective caspase-3/7, -6 and -8 inhibitors, and by a cathepsins B/L inhibitor; (iii) associated with the release of mitochondrial proteins, including cytochrome c and Smac/DIABLO; (iv) accompanied by dissipation of the mitochondrial membrane potential, (v) partially blocked by the inhibition of p38MAPK and (vi) mostly abrogated by catalase. In conclusion, the synthetic chalcone is cytotoxic against several types of human leukaemia cell with apoptosis being induced by activation of the extrinsic pathway and the generation of reactive oxygen species.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Leucemia/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/síntese química , Apoptose/fisiologia , Catepsina D/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia/metabolismo , Leucemia/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pepstatinas/farmacologia
7.
Chem Biol Interact ; 256: 220-7, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27423764

RESUMO

Flavonoids have attracted great interest due to their possible anticancer activities. Here we investigated the antiproliferative activity of the flavonoids isolated from Baccharis scandens against human leukemia cell lines and found that the methoxyflavonoid gardenin B was the most cytotoxic compound against HL-60 and U-937 cells, showing IC50 values between 1.6 and 3.0 µM, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. These effects on viability were accompanied by the concentration- and time-dependent appearance of apoptosis as evidenced by DNA fragmentation, formation of apoptotic bodies and a sub-G1 ratio increase. Comparative studies with the best-studied bioflavonoid quercetin indicate that gardenin B is a more cytotoxic and more apoptotic inducer than quercetin. Cell death induced by gardenin B was associated with: (i) a significant induction of caspase-2, -3, -8 and -9 activities; (ii) cleavage of the initiator caspases (caspase-2, -8 and -9), of the executioner caspase-3, and of poly(ADP-ribose) polymerase; and (iii) a concentration-dependent reactive oxygen species generation. In conclusion, apoptosis induced by gardenin B is associated with activation of both the extrinsic and the intrinsic apoptotic pathways of cell death and occurs through a mechanism that is independent of the generation of reactive oxygen species.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Flavonas/farmacologia , Leucemia/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/química , Baccharis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Flavonas/química , Células HL-60 , Humanos , Leucemia/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA