Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 183(4): 982-995.e14, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991843

RESUMO

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Assuntos
Inflamação/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , Anticorpos Antivirais/sangue , Autoanticorpos/sangue , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Quimiocina CCL3/metabolismo , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunidade Humoral , Lactente , Recém-Nascido , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Adulto Jovem
3.
PLoS Genet ; 18(11): e1010367, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36327219

RESUMO

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Assuntos
COVID-19 , Exoma , Humanos , Exoma/genética , Estudo de Associação Genômica Ampla , COVID-19/genética , Predisposição Genética para Doença , Receptor 7 Toll-Like/genética , SARS-CoV-2/genética
4.
Gastroenterology ; 164(4): 619-629, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634824

RESUMO

BACKGROUND & AIMS: Better biomarkers for prediction of ulcerative colitis (UC) development and prognostication are needed. Anti-integrin αvß6 (anti-αvß6) autoantibodies have been described in patients with UC. We tested for the presence of anti-αvß6 antibodies in the preclinical phase of UC and studied their association with disease-related outcomes after diagnosis. METHODS: Anti-αvß6 autoantibodies were measured in 4 longitudinal serum samples collected from 82 subjects who later developed UC and 82 matched controls from a Department of Defense preclinical cohort (PREDICTS [Proteomic Evaluation and Discovery in an IBD Cohort of Tri-service Subjects]). In a distinct, external validation cohort (Crohn's and Colitis Canada Genetic Environmental Microbial project cohort), we tested 12 pre-UC subjects and 49 matched controls. Furthermore, anti-αvß6 autoantibodies were measured in 2 incident UC cohorts (COMPASS [Comprehensive Care for the Recently Diagnosed IBD Patients], n = 55 and OSCCAR [Ocean State Crohn's and Colitis Area Registry], n = 104) and associations between anti-αvß6 autoantibodies and UC-related outcomes were defined using Cox proportional hazards model. RESULTS: Anti-αvß6 autoantibodies were significantly higher among individuals who developed UC compared with controls up to 10 years before diagnosis in PREDICTS. The anti-αvß6 autoantibody seropositivity was 12.2% 10 years before diagnosis and increased to 52.4% at the time of diagnosis in subjects who developed UC compared with 2.7% in controls across the 4 time points. Anti-αvß6 autoantibodies predicted UC development with an area under the curve of at least 0.8 up to 10 years before diagnosis. The presence of anti-αvß6 autoantibodies in preclinical UC samples was validated in the GEM cohort. Finally, high anti-αvß6 autoantibodies was associated with a composite of adverse UC outcomes, including hospitalization, disease extension, colectomy, systemic steroid use, and/or escalation to biologic therapy in recently diagnosed UC. CONCLUSIONS: Anti-integrin αvß6 autoantibodies precede the clinical diagnosis of UC by up to 10 years and are associated with adverse UC-related outcomes.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Humanos , Colite Ulcerativa/tratamento farmacológico , Autoanticorpos , Proteômica , Doença de Crohn/tratamento farmacológico , Biomarcadores , Colite/complicações
5.
Gastroenterology ; 163(3): 659-670, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623454

RESUMO

BACKGROUND & AIMS: Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAbs) are detected in patients with ileal Crohn's disease (CD). Their induction and mode of action during or before disease are not well understood. We aimed to investigate the underlying mechanisms associated with aGMAb induction, from functional orientation to recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive biomarker for complicated CD. METHODS: We characterized using enzyme-linked immunosorbent assay naturally occurring aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a mechanism that governs the impaired immune balance in CD mucosa after diagnosis. RESULTS: Neutralizing aGMAbs were found to be specific for post-translational glycosylation on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa. CONCLUSIONS: Anti-GMAbs predict the diagnosis of complicated CD long before the diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate lymphoid cell balance associated with altered intestinal immune homeostasis.


Assuntos
Doença de Crohn , Doenças do Íleo , Autoanticorpos , Doença de Crohn/complicações , Epitopos , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Doenças do Íleo/complicações , Imunidade Inata , Linfócitos , Macrófagos
6.
Clin Proteomics ; 19(1): 34, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171541

RESUMO

INTRODUCTION: Severe COVID-19 leads to important changes in circulating immune-related proteins. To date it has been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID-19 outcomes and underlie differences in outcomes between sexes. Here, we measured 147 immune-related proteins during acute COVID-19 to investigate these questions. METHODS: We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two large independent hospital-based COVID-19 cohorts in Canada and the United States. We fit generalized additive models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infection which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as individuals with COVID-19 requiring invasive or non-invasive mechanical respiratory support. RESULTS: 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 × 10-4). Three clusters were formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which proteins have a true causal effect on severe COVID-19. Six proteins showed sex differences in levels over time, of which 3 were also associated with severe COVID-19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the marked differences in outcomes by sex. CONCLUSIONS: Severe COVID-19 is associated with large changes in 69 immune-related proteins. Further, five proteins were associated with sex differences in outcomes. These results provide direct insights into immune-related proteins that are strongly influenced by severe COVID-19 infection.

7.
Cytometry A ; 99(5): 446-461, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33496367

RESUMO

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining, and data acquisition protocols can all introduce technical variation that can confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We apply this workflow to characterize 184 whole blood samples collected longitudinally from a cohort of 72 hospitalized COVID-19 patients and healthy controls, highlighting dynamic disease-associated changes in circulating immune cell frequency and phenotype.


Assuntos
COVID-19/diagnóstico , Separação Celular , Citometria de Fluxo , Imunofenotipagem , Leucócitos/imunologia , SARS-CoV-2/imunologia , Fluxo de Trabalho , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Leucócitos/metabolismo , Leucócitos/virologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Adulto Jovem
9.
Am J Emerg Med ; 35(5): 803.e1-803.e3, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27989537

RESUMO

Delayed cardiac tamponade (DCT) is a rare and life-threatening complication of catheter ablation performed as a treatment of atrial fibrillation, with few cases described in the medical literature. We present the case of a 57year-old man presenting with DCT 61days following a catheter ablation procedure. To the best of our knowledge, this is the most delayed case of cardiac tamponade (CT) following catheter ablation described in the literature. We also discuss the importance of point of care ultrasound (POCUS) in the diagnosis and treatment of CT. Emergency physicians must maintain a high index of suspicion in making the diagnosis of CT as patients may present with vague symptoms such as neck or back pain, shortness of breath, fatigue, dizziness, or altered mental status, often without chest pain. Common risk factors for CT include cancer, renal failure, pericarditis, cardiac surgery, myocardial rupture, trauma, and retrograde aortic dissection. In addition, although rare, both catheter ablation and use of anticoagulation carry risks of developing CT. A worldwide survey of medical centers performing catheter ablation found CT as a complication in less than 2% of cases [1]. Some proposed mechanisms of DCT include small pericardial hemorrhages following post-procedural anticoagulation or rupture of the sealed ablation-induced left atrial wall [2]. Clinical examination and electrocardiography may be helpful. However, the criterion standard for diagnosing CT is echocardiography [3].


Assuntos
Anticoagulantes/uso terapêutico , Fibrilação Atrial/terapia , Tamponamento Cardíaco/diagnóstico por imagem , Ablação por Cateter/efeitos adversos , Medicina de Emergência , Pericardiocentese/métodos , Rivaroxabana/uso terapêutico , Síncope/etiologia , Anticoagulantes/efeitos adversos , Fibrilação Atrial/complicações , Tamponamento Cardíaco/etiologia , Tamponamento Cardíaco/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Rivaroxabana/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia de Intervenção
10.
Cancer Res Commun ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934093

RESUMO

PURPOSE: To investigate the cellular and molecular mechanisms associated with targeting CD30-expressing Hodgkin Lymphoma (HL) and immune checkpoint modulation induced by combination therapies of CTLA-4 and PD1. PATIENTS AND METHODS: Phase 1/2, multicenter, open-label, trial NCT01896999 enrolled patients with refractory or relapsed HL (R/R HL) after one or more lines of therapy, with adequate performance status and organ function. Using peripheral blood, we assessed soluble proteins, cell composition, T cell clonality, and tumor antigen-specific antibodies in 54 patients enrolled in the phase 1 component of the trial. RESULTS: NCT01896999 reported high (>75%) overall objective response rates with brentuximab-vedotin (BV) in combination with ipilimumab (I) and/or nivolumab (N) in patients with R/R HL. We observed durable increase in soluble PD-1 and plasmacytoid dendritic cells as well as decreases in plasma CCL17, ANGPT2, MMP12, IL13, and CXCL13 in N-containing regimens (BV+N and BV+I+N) compared with BV+I (p<0.05). Non-responders and patients with short progression free-survival showed elevated CXCL9, CXCL13, CD5, CCL17, adenosine-deaminase, and MUC16 at baseline or after one treatment cycle and a higher prevalence of NY-ESO-1-specific autoantibodies (p<0.05). CONCLUSIONS: The results suggest a circulating tumor-immune-derived signature of BV±I+N treatment resistance that may be useful for patient stratification in combination checkpoint therapy.

11.
Nat Med ; 29(1): 236-246, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36482101

RESUMO

Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Anticorpos Antivirais
12.
medRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961671

RESUMO

Background: Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 infection despite vaccination and leads to long-term kidney dysfunction. However, peripheral blood molecular signatures in AKI from COVID-19 and their association with long-term kidney dysfunction are yet unexplored. Methods: In patients hospitalized with SARS-CoV2, we performed bulk RNA sequencing using peripheral blood mononuclear cells(PBMCs). We applied linear models accounting for technical and biological variability on RNA-Seq data accounting for false discovery rate (FDR) and compared functional enrichment and pathway results to a historical sepsis-AKI cohort. Finally, we evaluated the association of these signatures with long-term trends in kidney function. Results: Of 283 patients, 106 had AKI. After adjustment for sex, age, mechanical ventilation, and chronic kidney disease (CKD), we identified 2635 significant differential gene expressions at FDR<0.05. Top canonical pathways were EIF2 signaling, oxidative phosphorylation, mTOR signaling, and Th17 signaling, indicating mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Comparison with sepsis associated AKI showed considerable overlap of key pathways (48.14%). Using follow-up estimated glomerular filtration rate (eGFR) measurements from 115 patients, we identified 164/2635 (6.2%) of the significantly differentiated genes associated with overall decrease in long-term kidney function. The strongest associations were 'autophagy', 'renal impairment via fibrosis', and 'cardiac structure and function'. Conclusions: We show that AKI in SARS-CoV2 is a multifactorial process with mitochondrial dysfunction driven by ER stress whereas long-term kidney function decline is associated with cardiac structure and function and immune dysregulation. Functional overlap with sepsis-AKI also highlights common signatures, indicating generalizability in therapeutic approaches. SIGNIFICANCE STATEMENT: Peripheral transcriptomic findings in acute and long-term kidney dysfunction after hospitalization for SARS-CoV2 infection are unclear. We evaluated peripheral blood molecular signatures in AKI from COVID-19 (COVID-AKI) and their association with long-term kidney dysfunction using the largest hospitalized cohort with transcriptomic data. Analysis of 283 hospitalized patients of whom 37% had AKI, highlighted the contribution of mitochondrial dysfunction driven by endoplasmic reticulum stress in the acute stages. Subsequently, long-term kidney function decline exhibits significant associations with markers of cardiac structure and function and immune mediated dysregulation. There were similar biomolecular signatures in other inflammatory states, such as sepsis. This enhances the potential for repurposing and generalizability in therapeutic approaches.

13.
Nat Med ; 29(11): 2825-2834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783966

RESUMO

Cystectomy is a standard treatment for muscle-invasive bladder cancer (MIBC), but it is life-altering. We initiated a phase 2 study in which patients with MIBC received four cycles of gemcitabine, cisplatin, plus nivolumab followed by clinical restaging. Patients achieving a clinical complete response (cCR) could proceed without cystectomy. The co-primary objectives were to assess the cCR rate and the positive predictive value of cCR for a composite outcome: 2-year metastasis-free survival in patients forgoing immediate cystectomy or

Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cisplatino/uso terapêutico , Desoxicitidina/uso terapêutico , Intervalo Livre de Doença , Gencitabina , Músculos , Terapia Neoadjuvante , Invasividade Neoplásica , Nivolumabe/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Proteína Grupo D do Xeroderma Pigmentoso
14.
Commun Med (Lond) ; 3(1): 81, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308534

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. METHODS: Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N = 437), we identified 413 higher plasma abundances of protein targets and 30 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p < 0.05). Of these, 62 proteins were validated in an external cohort (p < 0.05, N = 261). RESULTS: We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p < 0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. CONCLUSIONS: Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Acute kidney injury (AKI) is a sudden, sometimes fatal, episode of kidney failure or damage. It is a known complication of COVID-19, albeit through unclear mechanisms. COVID-19 is also associated with kidney dysfunction in the long term, or chronic kidney disease (CKD). There is a need to better understand which patients with COVID-19 are at risk of AKI or CKD. We measure levels of several thousand proteins in the blood of hospitalized COVID-19 patients. We discover and validate sets of proteins associated with severe AKI and CKD in these patients. The markers identified suggest that kidney injury in COVID-19 patients involves damage to kidney cells that reabsorb fluid from urine and reduced blood flow to the heart, causing damage to heart muscles. Our findings might help clinicians to predict kidney injury in patients with COVID-19, and to understand its mechanisms.

15.
Sci Rep ; 13(1): 6236, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069249

RESUMO

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Proteínas , Fatores de Risco , Progressão da Doença , Estudos Retrospectivos
16.
Heliyon ; 8(8): e10166, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35958514

RESUMO

Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest computed tomography (CT) in combination with plasma cytokines using a machine learning and k-fold cross-validation approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n = 152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within five days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α), were collected from the electronic medical record. We found that CT quantitative alone was better at predicting severity (AUC 0.81) than death (AUC 0.70), while cytokine measurements alone better-predicted death (AUC 0.70) compared to severity (AUC 0.66). When combined, chest CT and plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82). Finally, we provide a simple scoring system (nomogram) using plasma IL-6, IL-8, TNF-α, ground-glass opacities (GGO) to aerated lung ratio and age as new metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19.

17.
bioRxiv ; 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35043110

RESUMO

Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, very little progress has been made to identify curative therapies to treat COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and death to develop tailored immunotherapy strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) presentation and effector T cell signature, while severe disease and death were associated with an altered Ag presentation signature, increased numbers of circulating inflammatory, immature myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages (AM) were not only severely depleted, but also had an altered Ag presentation signature, and were replaced by inflammatory monocytes and monocyte-derived macrophages (MoMΦ). Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality were restored in patients that recovered. These data therefore suggest that local and systemic myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung inflammatory illnesses.

18.
Sci Transl Med ; 14(662): eabn5168, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103512

RESUMO

Although it has been more than 2 years since the start of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and mortality to develop tailored immunotherapy strategies to halt disease progression. We assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and survival were associated with a stronger antigen presentation and effector T cell signature. In contrast, severe disease and death were associated with an altered antigen presentation signature, increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells that have been previously associated with autoantibody formation. In severely ill patients with COVID-19, lung tissue-resident alveolar macrophages not only were drastically depleted but also had an altered antigen presentation signature, which coincided with an influx of inflammatory monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar macrophage pool correlated with patient outcome and that alveolar macrophage numbers and functionality were restored to homeostasis in patients who recovered from COVID-19. These data suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic strategy for the treatment of critical inflammatory lung diseases.


Assuntos
COVID-19 , Macrófagos Alveolares , Humanos , Pulmão , Macrófagos , Monócitos
19.
medRxiv ; 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36093350

RESUMO

Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Using measurements of ∼4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.

20.
medRxiv ; 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34671777

RESUMO

Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest CT in combination with plasma cytokines using a machine learning approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n=152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within 5 days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α) were collected from the electronic medical record. We found that chest CT combined with plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82), whereas CT quantitative was better at predicting severity (AUC 0.81 vs 0.70) while cytokine measurements better predicted death (AUC 0.70 vs 0.66). Finally, we provide a simple scoring system using plasma IL-6, IL-8, TNF-α, GGO to aerated lung ratio and age as novel metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA