Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Chem Chem Phys ; 20(7): 5012-5020, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29388640

RESUMO

The rapid and reversible ionic electrosorption in the electrical double layers (EDLs) of moderately charged micropores in contact with a solution is the main concept underlying capacitive energy and desalination devices. For the usual operating conditions, the ion concentration is large enough for the confinement of ions to play an important role in their distribution in the EDL. On the other hand, although most laboratory experiments have been carried out with simple salt solutions, realistic applications require a proper analysis of the effect of the different ionic species existing in natural waters. Here we focus on the role of multiionic solutions on the double layer structure. For this purpose, a model is presented in which the EDL overlap and the existence of a Stern layer are considered. It is also taken into account that the ions can be tightly packed by using the Carnahan-Starling model. This model is applied to analyze the structure of the EDL with multiionic solutions containing divalent ions. The predictions of this model are found to largely differ from those of the better known Bikerman equation, and are more realistic. It is demonstrated that the presence of tiny amounts of divalent ions in the bulk is enough to dominate the EDL behavior, and hence, its capacitance, energy storage, and desalination properties.

2.
Phys Chem Chem Phys ; 16(46): 25241-6, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25348814

RESUMO

In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.

3.
Phys Rev E ; 105(6-1): 064604, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854619

RESUMO

In the present work, a general model is developed for the electrokinetics and dielectric response of a concentrated salt-free colloid that takes into account the finite size of the counterions released by the particles to the solution. The effects associated with the counterion finite size have been addressed using a hard-sphere model approach elaborated by Carnahan and Starling [N. F. Carnahan and K. E. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys. 51, 635 (1969)0021-960610.1063/1.1672048]. A more simple description of the finite size of the counterions based on that by Bikerman has also been considered for comparison. The studies carried out in this work include predictions on the effect of the finite counterion size on the equilibrium properties of the colloid and its electrokinetic and dielectric response when it is subjected to constant or alternating electric fields. The results show how important the counterion finite-size effects are for most of the electrokinetic and dielectric properties of highly charged and concentrated colloids, mainly for the static and dynamic electrophoretic mobilities. Furthermore, new insights are provided on the counterion condensation effect when counterions are allowed to have finite size. Focus is placed on the changes undergone by their concentration in the condensation layer for low-salt and highly charged colloids.

4.
Adv Colloid Interface Sci ; 299: 102539, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610864

RESUMO

Because of their singular phenomenology, the so-called salt-free colloids constitute a special family of dispersed systems. Their main characteristic is that the dispersion medium ideally contains only the solvent and the ions compensating exactly the surface charge of the particles. These ions (often called released counterions) come into the solution when the surface groups responsible for the particles charge get ionized. An increasing effort is nowadays dedicated to rigorously compare theoretical model predictions for ideal salt-free suspensions, where only the released counterions are supposed to be present in solution, with appropriately devised experiments dealing with colloids as close as possible to the ideal salt-free ones. Of course, if the supporting solution is aqueous, the presence of atmospheric contamination and any other charged species different from the released counterions in the solution must be avoided. Because this is not an easy task, the presence of dissolved atmospheric CO2 and of H+ and OH- from water dissociation cannot be fully discarded in aqueous salt-free solutions (often denominated realistic in such case). Ultimately, at some point, the role of the released counterions will be comparable or even larger in highly charged concentrated colloids than that of added salts. These topics are covered in the present contribution. The model results are compared with experimental data on the dynamic mobility and dielectric dispersion of polystyrene spheres of various charges and sizes. As a rule, it is found that the model correctly predicts the significance of alpha and Maxwell-Wagner-O'Konski relaxations. Positions and amplitudes of such relaxations are well predicted, although it is necessary to assume that the released counterions are potassium or sodium instead of protons, otherwise the frequency spectra of experimental mobility and permittivity differ very significantly from those theoretically calculated. The proposed electrokinetic evaluation is an ideal tool for detecting in situ the possible contamination (or incomplete ion exchange of the latexes). A satisfactory agreement is found when potassium counterions are assumed to be in solution, mostly if one considers that the comparison is carried out without using any adjustable parameters.

5.
Langmuir ; 26(22): 16833-40, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20939556

RESUMO

An investigation is described on the electric-field-induced structures in colloidal dispersions. Both rheological determinations and direct microscopic observations are used with that aim. The starting point of this study is the so-called electrorheological (ER) effect, consisting of the mechanical reinforcing of a fluid or suspension due to formation of chains of molecules or particles after being polarized by the action of the field. One macroscopic manifestation of this phenomenon is the transformation of the fluid from a typically Newtonian behavior to a viscoelastic material, with finite yield stress and high elastic modulus. The systems investigated were suspensions of elongated goethite (ß-FeOOH) particles in silicone oils with varying amounts of silica nanoparticles. The results showed the rather unusual behavior known as "negative ER effect", which can be best described by saying that the application of an electric field reduces the yield stress and the elastic modulus, that is, produces destruction of structures rather than their build up. The negative behavior is also found for suspensions of other inorganic powders, including hematite and quartz. On the contrary, the usual positive ER response is found for suspensions of cellulose and montmorillonite clay. The same happens if goethite suspensions are prepared in high volume fractions, high-viscosity fluids, or both. All of the results found are compatible with the so-called interfacial model of electrorheology: the reduction of the yield stress of goethite suspensions when the applied field is high enough is the consequence of particle migration toward the electrodes because of charge injection and subsequent electrophoresis. The migration leaves the gap between the electrodes devoid of particles and explains the decrease in yield stress. The addition of silica nanoparticles contributes to reduce the strength of this effect by hindering the charging and making it necessary to increase the field strength to observe the negative effect. The model appears to also be applicable to cellulose, although the positive response found for such particles is explained by their large size: larger diameters bring about larger attraction forces between particles, leading to a tendency to produce strong aggregates. This is likely to occur in suspensions of colloids which, because of their relatively high electrical conductivity, tend to acquire charge even in such nonpolar liquids as silicone oils.

6.
Phys Rev E ; 102(3-1): 032614, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33076032

RESUMO

Electrokinetics is the science of the physical phenomena appearing at the solid-liquid interface of dispersed particles subjected to external fields. Techniques based on electrokinetic phenomena constitute an important set of tools for the electrical characterization of colloids because of their sensitivity to the properties of particle-solution interfaces. Their rigorous description may require inclusion of the effects of finite size of chemical species in the theoretical models, and, particularly in the case of salt-free (no external salt added) aqueous colloids, also consideration of water dissociation and possible carbon dioxide contamination in the aqueous solution. A new ac electrokinetic model is presented for concentrated salt-free spherical colloids for arbitrary characteristics of the particles and aqueous solution, including finite-size effects of chemical species by appropriate modifications of the chemical reaction equations to include such non-ideal aspects. The numerical solution of the electrokinetic equations in an alternating electric field has also been carried out by using a realistic non-equilibrium scenario accounting for association-dissociation processes in the chemical reactions. The results demonstrate the importance of including finite-size effects in the electrokinetic response of the colloid, mainly at high frequencies of the electric field, and for highly charged colloids. Findings of previous models for pointlike ions or for ideal salt-free colloids including finite ion size effects are recovered with the present model, for the appropriate limiting conditions.

7.
Langmuir ; 25(20): 12040-7, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19764739

RESUMO

In this article, a cell model is used for the evaluation of the alternating current (ac) mobility (dynamic mobility) of spherical particles in suspensions of arbitrary volume fractions of solids. The main subject is the consideration of the role of the electrical conductivity (SLC or K(sigmai)) of the stagnant layer (SL) on the mobility. It is assumed that the total surface conductivity (K(sigma)), resulting from both K(sigmai) and the diffuse layer conductivity (K(sigmad)), is constant in the cases considered and that it is the K(sigmai)-K(sigmad) balance that determines the SL effects. We first explore the effect of K(sigmai) on the frequency dependence of the dynamic mobility. It is found that the mobility decreases on average, for any frequency, when K(sigmai) increases. This is a consequence of stagnancy: ions in the SL, although contributing to the surface conductivity, do not drag liquid with them when they migrate and do not contribute to electro-osmotic flow or, equivalently, to electrophoresis. Three relaxations are observed in the mobility-frequency spectrum: inertial (the particle and liquid motions are hindered), Maxwell-Wagner-O'Konski (ions in the double layer cannot follow the field oscillations and can move only over a distance much smaller that the diffuse layer thickness), and the so-called alpha or concentration polarization process (the ions can rearrange around the particle, but they cannot form the electrolyte concentration field that appears at low frequency). Whereas the first two relaxations are little affected by K(sigmai), the alpha process undergoes significant changes. Thus, the mobility increases with frequency around the alpha relaxation region if K(sigmai) is negligible, but it decreases with frequency in the same interval if K(sigmai) is finite. With the aim of explaining this behavior, we calculate the capillary osmosis velocity field that is the fluid flow provoked by the concentration gradient around the particle. The calculations presented demonstrate that the velocity is reduced (for each frequency and position) when the SLC is raised. It is proposed that such a decrease adds to that due to the changes in the induced dipole moment of the particle, also favoring a decrease in the mobility. These tendencies are also present when the volume fraction of solids, phi, is modified, although higher phi values somewhat hide the effect of K(sigmai), as in fact observed with all features of electrokinetics associated with the phenomenon of concentration polarization.

8.
Eur Phys J E Soft Matter ; 29(1): 87-94, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19430949

RESUMO

In this paper we describe the magnetorheological behavior of aqueous suspensions consisting of magnetite particles of two size populations, in the micrometer and nanometer scale, respectively. Previous works on the magnetorheology of oil-based fluids demonstrated that the addition of nanoparticles has a very significant effect on the intensity of the magnetorheological effect. The present contribution confirms such results in the case of aqueous fluids, based on the dependence of the yield stress and the viscosity of the bimodal suspensions on both the composition of the mixtures and the magnetic field strength. It is demonstrated that for a given concentration of micrometer particles, increasing the amount of nanometer magnetite provokes a clear enhancement in the yield stress for all the magnetic fields applied. This is proposed to be due to the formation of heterogeneous aggregates that improve the stability of the suspensions and ease the building of well-arranged field-induced structures. The behavior of both the yield stress and the post-yield viscosity agrees better with the predictions of standard chain models when the relative proportion of both types of particles confers optimum stability to the bimodal dispersions.

9.
Int J Pharm ; 337(1-2): 282-90, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17223292

RESUMO

In the present work, a method is described to prepare polymeric colloidal nanospheres, consisting of poly(ethyl-2-cyanoacrylate) (PE-2-CA) or poly(butylcyanoacrylate) (PBCA), loaded with the anticancer drug ftorafur. The method is based on the anionic polymerization procedure, often used in the synthesis of poly(alkylcyanoacrylate) nanospheres for drug delivery. A detailed investigation of the capabilities of both polymeric nanoparticles to load this drug is shown. The effect of synthesis residuals and degradation products on the absorbance of supernatants was considered in the loading and release measurement methodologies, because of their potential perturbing influence on the determination of ftorafur concentration in solution. We found the existence of two mechanisms of drug incorporation: absorption or entrapment in the polymeric network, and surface adsorption, detectable by means of zeta potential and spectrophotometric measurements. Among the factors affecting the drug incorporation to the polymer network, the type of polymer, the pH and the drug concentration are the main determining ones. Moreover, the acidity of the medium needs to be controlled in order to avoid the formation of macroaggregates of solids. The optimum loading conditions were used to perform ftorafur release evaluations from polymeric particles, and the influence of the mechanism of drug incorporation, the amount of drug loaded, and the type of polymer on the drug release were studied.


Assuntos
Antimetabólitos Antineoplásicos/química , Cianoacrilatos/química , Portadores de Fármacos , Embucrilato/química , Nanotubos , Tegafur/química , Absorção , Adsorção , Química Farmacêutica , Preparações de Ação Retardada , Dextranos/química , Composição de Medicamentos , Eletroforese , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Tamanho da Partícula , Reprodutibilidade dos Testes , Solubilidade , Espectrofotometria Ultravioleta , Propriedades de Superfície , Tensoativos/química , Tecnologia Farmacêutica/métodos , Água/química
10.
Int J Pharm ; 339(1-2): 237-45, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17398048

RESUMO

A reproducible method for the preparation of mixed colloidal nanoparticles, consisting of a magnetic carbonyl iron nucleus and a biocompatible ethylcellulose latex shell, is described in this article. The heterogeneous structure of the particles can confer them both the possibility of being used as drug delivery systems and the responsiveness to external magnetic fields, allowing a selective guidance of drug molecules to specific target tissues without a concurrent increase in its level in healthy tissues. The preparation method is based on an emulsion solvent evaporation process. A complete physicochemical characterization of the composite particles was carried out, and this preliminary investigation showed that the surface behavior of the core/shell particles is similar to that of bare ethylcellulose particles. This was confirmed, in particular, by zeta potential determinations as a function of pH and ionic strength. This fact points to the ethylcellulose shell efficiently coating carbonyl iron, and leading to composite particles which, from the electrokinetic point of view, are almost indistinguishable from latex. The thermodynamic analysis agrees with the electrokinetic one in suggesting that the coverage has been complete, since the components of the surface free energy of mixed particles coincide almost exactly with those corresponding to the cellulose-based pseudolatex. Moreover, the hydrophilic nature of carbonyl iron is modified and the particles become hydrophobic, just like the latex, when they are covered by ethylcellulose. The magnetic behaviors of the carbonyl iron and composite particles were also checked, and the similarities between both types of particles were demonstrated, except that the polymeric shell reduces the magnetization of the sample.


Assuntos
Celulose/análogos & derivados , Sistemas de Liberação de Medicamentos , Compostos de Ferro/química , Magnetismo , Nanopartículas/química , Celulose/química , Coloides , Compostos Carbonílicos de Ferro , Propriedades de Superfície , Termodinâmica
11.
J Colloid Interface Sci ; 309(2): 342-9, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17343866

RESUMO

In this paper we evaluate the validity of a cell model for the calculation of the dynamic mobility of concentrated suspensions of spheres. The key point is the consideration of the boundary conditions (electrical and hydrodynamic) at the boundary of the fluid cell surrounding a single probe particle. The model proposed is based on a universal criterion for the averages of fluid velocity, electric potential, pressure field or electrochemical properties in the cell. The calculations are checked against a wide set of experimental data on the dynamic mobility of silica suspensions with two different radii, several ionic strengths, and two particle concentrations. The comparison reveals an excellent agreement between theory and experiment, and the model appears to be extremely suitable for correctly predicting the behavior of the dynamic mobility, including the changes in the zeta potential, zeta, with ionic strength, the frequency and amplitude of the Maxwell-Wagner-O'Konski relaxation, and the inertial relaxation occurring at the top of the frequency range accessible to our experimental device.

12.
J Colloid Interface Sci ; 309(2): 308-14, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17367803

RESUMO

Both from the experimental and theoretical viewpoints it is of fundamental importance to know precisely which are the fluid flow characteristics in a (cylindrical, say) closed cell under the action of an externally applied electric field, parallel to the cell axis. This is so because in many cases the experimental determination of the electrophoretic mobility of dispersed particles is carried out in closed cells, whereby the motion of the particles in the laboratory reference system is the result of the superposition of their electrophoretic migration plus the liquid motion with respect to the cell. This makes it of utmost importance to analyze the above-mentioned fluid and particle movements. If, in particular, this evaluation is carried out in the presence of alternating fields of different frequencies, information about the dynamics and time scales of the processes involved can be obtained for different frequencies of the applied field. In the present contribution, we discuss experimental results based on the determination of the velocity of polystyrene latex particles in a closed, cylindrical electrophoresis cell, and compare them to our previous theoretical analysis of the problem. It is concluded that the theory explains with great accuracy the observed particle velocities. In addition to the use of the particles as probes for the fluid velocity distribution, this work intends to give additional clues on the frequencies and positions for which electrophoretic mobility measurements in closed cells can be more reliable.

13.
J Colloid Interface Sci ; 316(2): 836-43, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17884068

RESUMO

In this work we investigate how combined data on dielectric dispersion and electrophoretic mobility of colloidal suspensions at different temperatures can be used to evaluate the two main quantities characterizing the solid/liquid interface, namely, the zeta potential and the stagnant layer conductivity (SLC). This is possible because the electric permittivity depends on the total surface conductivity, while the electrophoretic mobility is governed by both the zeta potential and that conductivity. Based on a simple analytical theory, we can also estimate the diffusion coefficient of counterions in the stagnant layer, D(SL), for each temperature. The results lead to a good agreement between theory and experiment, although with somewhat high values of D(SL). With the aim of improving this description, we use a full theory of the electric permittivity of suspensions that accounts for the existence both of SLC and of a finite volume fraction of solids. An excellent description of the whole dielectric spectrum and of the electrophoretic mobility is possible in this case, although with still overestimated diffusion coefficients. This fact is discussed, and the importance of considering particle concentration effects even for suspensions that are often considered dilute is also stressed.

14.
J Colloid Interface Sci ; 309(1): 135-9, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17346730

RESUMO

In this paper, we describe an investigation of the stability and sedimentation behavior of moderately concentrated suspensions of extremely bimodal magnetite particles, including micro- (diameter 1450 nm) and nano- (diameter 8 nm) units. An original method is used, based on the determination of the time dependence of the inductance of a coil surrounding the suspensions. The method proves to be very useful for the determination of the volume fraction of magnetic material in the sensed volume. The observed changes in the resonant frequency of a parallel LC circuit demonstrate that the addition of the magnetite nanoparticles improves the stability and slows down the settling rate of the mixed suspensions. It is proposed that the observed behavior is the result of competition between two processes. One is the formation of a cloud of nanoparticles around the large magnetite units, by virtue of which the latter are maintained at distances beyond the range of DLVO and magnetic attractive interactions. At long times, these composite units will eventually sediment when some critical size is reached, as the small particles are progressively associated with the large ones. The second mechanism is mainly predominant at short times and is related to the higher viscosity of the dispersion medium (the nanoparticles dispersed in the base fluid) for higher nanoparticle concentrations. The stability of the suspensions is discussed in terms of the competition between the two mechanisms.

15.
J Colloid Interface Sci ; 309(2): 296-302, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17350642

RESUMO

Prompted by the results obtained by Mantegazza et al. [Nature Physics 1 (2005) 103], where the electric birefringence of suspensions of elongated particles was strikingly affected by the presence of a sea of very small (size ratio lower than 10:1) colloidal spheres, we have undertaken an investigation of other electrokinetic phenomena in suspensions containing various relative concentrations of large (Teflon or polystyrene latex) and small (nanometer-sized silica spheres) colloids. We have determined the quantities that might be greatly affected by the size distribution of the particles, mainly in the presence of ac electric fields, since the response of the suspensions will show very characteristic relaxations, dominated in principle by the size of the particles. In this work, we report on measurements of the dielectric dispersion of mixed particles as a function of the concentration, ionic strength, and field frequency. The results indicate that the response is not just a simple combination of those obtained with suspensions of the individual particles, and in fact the presence of even small amounts of the small particles affects considerably the frequency response of the suspensions.


Assuntos
Modelos Químicos , Suspensões/química , Coloides/química , Eletroquímica , Cinética , Tamanho da Partícula , Propriedades de Superfície
16.
J Colloid Interface Sci ; 309(2): 194-224, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17368660

RESUMO

In this report, the status quo and recent progress in electrokinetics are reviewed. Practical rules are recommended for performing electrokinetic measurements and interpreting their results in terms of well-defined quantities, the most familiar being the zeta-potential or electrokinetic potential. This potential is a property of charged interfaces and it should be independent of the technique used for its determination. However, often the zeta-potential is not the only property electrokinetically characterizing the electrical state of the interfacial region; the excess conductivity of the stagnant layer is an additional parameter. The requirement to obtain the zeta-potential is that electrokinetic theories be correctly used and applied within their range of validity. Basic theories and their application ranges are discussed. A thorough description of the main electrokinetic methods is given; special attention is paid to their ranges of applicability as well as to the validity of the underlying theoretical models. Electrokinetic consistency tests are proposed in order to assess the validity of the zeta-potentials obtained. The recommendations given in the report apply mainly to smooth and homogeneous solid particles and plugs in aqueous systems; some attention is paid to nonaqueous media and less ideal surfaces.

17.
J Colloid Interface Sci ; 311(2): 475-80, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17445826

RESUMO

In this paper we present a device and method suited to the experimental determination of the sedimentation rate of concentrated suspensions of magnetic particles. The method is based on the measurement of the inductance of one or more sensing coils located at specified positions around a test tube containing the suspension. Such measurement is made possible by the determination of the resonant frequency of a parallel LC circuit in which L is the inductance of the sensing coil and C is the capacity of a capacitor chosen in such a way that the resonant frequency is easily measured. Upon calibration it is possible to relate the resonant frequency to the volume fraction of the particles at the coil location. The method is applied in the present work to the evaluation of the sedimentation kinetics of iron suspensions in base fluids of viscosities ranging from 0.3 to 100 mPa s and volume fractions of solids between 2.5 and 25%. Both if a single coil is used and if a set of three coils at different positions are employed, it is possible to detect the rate of accumulation of particles at the bottom of the container as well as a phenomenon of buoyancy of the largest particles brought about by the hydrostatic push of a dense fluid consisting of the smallest particles in the supporting liquid.


Assuntos
Ferro/química , Magnetismo , Suspensões/química , Desenho de Equipamento , Pressão Hidrostática , Cinética , Métodos , Tamanho da Partícula , Viscosidade
18.
J Colloid Interface Sci ; 502: 112-121, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28478218

RESUMO

In this paper we present experimental results on the electrokinetic behavior of planar gibbsite particles in concentrated suspensions. The dc electrophoretic mobility measurements are in this case of little significance, as they are scarcely informative. In the present investigation, we show that the dielectric dispersion and dynamic electrophoresis can in contrast provide such information. The complicating factors are of course the non-spherical shape and the finite particle concentration, as no complete theory of these phenomena exists for such systems. We propose to use first of all a model of dynamic electrophoresis of spheroids in which the effect of volume fraction is considered by means of an approximate theory previously obtained for spheres, based on the evaluation of electrical and hydrodynamic interactions between particles. In addition, the role of volume fraction on the high frequency inertial relaxation is also ascertained and used to obtain a volume fraction-independent radius of the gibbsite spheroids. A similar approach is used for the evaluation of dielectric dispersion data. Both the dynamic mobility and dielectric constant dependencies on frequency were obtained for gibbsite suspensions of different volume fractions in 0.5mMKCl. The theoretical treatments elaborated were applied to these data, and a coherent picture of the geometrical and electrical characteristics of the particles was obtained.

19.
J Colloid Interface Sci ; 301(2): 660-7, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16781724

RESUMO

Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce successive corrections related to: (i) the back flow of fluid induced by the electrophoretic motion of the particles; (ii) the electrostatic interactions among particles; (iii) the difference between the macroscopic and the external electric fields; (iv) the difference between the zero-momentum and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell-Wagner-O'Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of the frequency and volume fraction dependences of the dynamic mobility.

20.
J Colloid Interface Sci ; 299(2): 599-607, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16580009

RESUMO

In this article a method is described to prepare composite colloidal nanoparticles, consisting of a magnetic core (carbonyl iron) and a biodegradable polymeric shell [poly(butylcyanoacrylate) or PBCA]. The method is based on the so-called anionic polymerization procedure, often used in the synthesis of poly(alkylcyanoacrylate) nanospheres designed for drug delivery. Interest of this investigation is based upon the fact that the heterogeneous structure of the particles can confer them both the possibility to respond to external magnetic fields and to be used as drug carriers. In order to investigate to what extent do the particles participate of this mixed properties, we compare in this work the physical characteristics (structure, chemical composition, specific surface area and surface electrical and thermodynamic properties) of the core/shell particles with those of both the nucleus and the coating material. This preliminary study shows that the mixed particles display an intermediate behavior between that of carbonyl iron and PBCA spheres. Electrophoretic mobility measurements as a function of pH and as a function of KNO3 concentration, show a great similarity between the core/shell and pure polymer nanoparticles. Similarly, a surface thermodynamic study performed on the three types of particles demonstrated that the electron-donor component of the surface free energy of the solids is very sensitive to the surface composition. In fact, a measurable decrease of such component is found for core/shell particles as compared to carbonyl iron. We also analyzed the influence of the relative amounts of polymer and carbonyl iron on the characteristics of the composite particles: data on the coating thickness, the amount of polymer bound to the magnetic nuclei, the redispersibility characteristics of the suspensions and the surface electrical and thermodynamic properties, suggest that the optimal synthesis conditions are obtained for a 4/3 initial monomer/carbonyl iron weight ratio.


Assuntos
Bucrilato/química , Compostos de Ferro/química , Implantes Absorvíveis , Cinética , Magnetismo , Nanopartículas , Adesivos Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA