Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298397

RESUMO

Shape memory alloy (SMA) micro cables have a wide potential for attenuation of vibrations and structural health monitoring due to energy dissipation. This work evaluates the effect of SMA thermomechanical coupling during dynamic cycling and the fatigue life of NiTi SMA micro cables submitted to tensile loadings at frequencies from 0.25 Hz to 10 Hz. The thermomechanical coupling was characterized using a previously developed methodology that identifies the self-heating frequency. When dynamically loaded above this frequency, the micro cable response is dominated by the self-heating, stiffening significantly during cycling. Once above the self-heating frequency, structural and functional fatigues of the micro cable were evaluated as a function of the loading frequency for the failure of each individual wire. All tests were performed on a single wire with equal cross-section area for comparison purposes. We observed that the micro cable's functional properties regarding energy dissipation capacity decreased throughout the cycles with increasing frequency. Due to the additional friction between the filaments of the micro cable, this dissipation capacity is superior to that of the single wire. Although its fatigue life is shorter, its delayed failure compared to a single wire makes it a more reliable sensor for structural health monitoring.


Assuntos
Ligas de Memória da Forma , Titânio , Humanos , Teste de Materiais , Estresse Mecânico , Titânio/química , Fadiga
2.
Materials (Basel) ; 15(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35329782

RESUMO

Despite technological advances in the production processes of the materials for ceramic façade coatings, the problems of detachments are still frequent. Therefore, this work aims to investigate, through a literature review, the existing gaps related to the adhesion ability of adhesive mortars, identifying new research needs that can better explain the behavior of the material. In addition, an experimental procedure was developed to evaluate the mechanical capacity of adhesive mortars when subjected to cyclic stresses. Dynamic stress measurements are presented for several blocks of mortar and on similar blocks but with a slot drilled prior to measurements (intended to represent failure). From these data we calculated values of stress energy, elastic energy, and dissipated energy. The experimental results showed that the energy involved in the test process accompanied the load values and current stress values. The mortar samples with the previous failure absorbed and dissipated less energy than mortars without failure, showing that materials that have less energy to dissipate, are materials that have developed less capacity to adhere, that is, to keep their parts together.

3.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335475

RESUMO

In this work, recycled poly(ethylene terephthalate) (PETR) was blended with virgin high-density polyethylene (HDPE) in an internal mixer in an attempt to obtain a material with improved properties. A compatibilizer (PE-g-MA) and a chain extender (Joncryl) were added to the PETR/HDPE blend and the rheological and thermal properties of the modified and unmodified blends as well as those of virgin PET with virgin HDPE (PETV/HDPE). All the blends were characterized by torque rheometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The data obtained indicate that the incorporation of either the chain extender or the compatibilizer agent led to increases in torque (and hence in viscosity) of the blend compared to that of the neat polymers. The joint incorporation of the chain extender and compatibilizer further increased the viscosity of the systems. Their effect on the crystallinity parameters of HDPE was minimal, but they reduced the crystallinity and crystallization temperature of virgin and recycled PET in the blends. The thermal stability of the PETR/HDPE blend was similar to that of the PETV/HDPE blend, and it was not affected by the incorporation of the chain extender and/or compatibilizer.

4.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361375

RESUMO

The understanding of the mechanical fixation behavior of coatings is crucial for a better comprehension of the bonding systems, especially at the interface between the mortar and the substrate. Physical adherence is related, among other things, to the contents of the materials used in the roughcast and mortar coatings, due to the colloidal water penetration into the pores of the substrate. This work evaluated the influence of different lime solution additions replacing the kneading water in the preparation of roughcast and mortar coatings. Two types of substrates were investigated:ceramic bricks and concrete blocks. Three wall masonry panels were constructed, with dimensions of 220 × 180 cm2, one of concrete block and two of ceramic bricks, followed by the application of roughcast and mortar coating with an average thickness of 5 mm and 20 mm, respectively. Direct tensile bond strength tests were performed and the results, with a 95% confidence level, showed that substrate ceramic and treatment in the roughcast exhibited a better behavior regarding the distribution of the tensile bond strength of the tested specimens. However, no significant differences of the amount of addition used (0%, 5%, 10% and 15%) on the tensile bond strength were observed.

5.
Membranes (Basel) ; 11(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567608

RESUMO

Wastewater from the oil industry can be considered a dangerous contaminant for the environment and needs to be treated before disposal or re-use. Currently, membrane separation is one of the most used technologies for the treatment of produced water. Therefore, the present work aims to study the process of separating oily water in a module equipped with a ceramic membrane, based on the Eulerian-Eulerian approach and the Shear-Stress Transport (SST k-ω) turbulence model, using the Ansys Fluent® 15.0. The hydrodynamic behavior of the water/oil mixture in the filtration module was evaluated under different conditions of the mass flow rate of the fluid mixture and oil concentration at the entrance, the diameter of the oil particles, and membrane permeability and porosity. It was found that an increase in the feed mass flow rate from 0.5 to 1.5 kg/s significantly influenced transmembrane pressure, that varied from 33.00 to 221.32 kPa. Besides, it was observed that the particle diameter and porosity of the membranes did not influence the performance of the filtration module; it was also verified that increasing the permeability of the membranes, from 3 × 10-15 to 3 × 10-13 m2, caused transmembrane pressure reduction of 22.77%. The greater the average oil concentration at the permeate (from 0.021 to 0.037 kg/m3) and concentrate (from 1.00 to 1.154 kg/m3) outlets, the higher the average flow rate of oil at the permeate outlets. These results showed that the filter separator has good potential for water/oil separation.

6.
Membranes (Basel) ; 10(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297473

RESUMO

Petroleum has been extracted from oil reservoirs using different techniques. This activity is accompanied for a large amount of water and sometimes mixed with gas. This produced water has a high oil concentration and other toxic chemical compounds, thus, it must be treated to be reused or released to environment according to environmental protection regulations. Currently, ceramic membrane technology has been employed in the wastewater treatment, due to its high benefit-cost ratio. In this sense, this work aims to study the oil-water mixture separation process using a new configuration of tubular ceramic membrane module by computational fluid dynamic (ANSYS Fluent software). The proposed model is composed of mass and linear momentum conservation equations coupled to Darcy's law and SST k-ω turbulence model. Results of the volumetric fraction, pressure, and velocity distribution of the oil and water phases are presented and discussed. The results indicated that the proposed model and new device both have great potential to be used on the water/oil separation process and that the transmembrane pressure remains constant in the axial direction and decreases radially through the membranes, indicating an efficient system that favors the transport of clean water and oil retention.

7.
J Public Health Res ; 4(3): 589, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26753162

RESUMO

BACKGROUND: Modern societies spend most of their time indoors, namely at home, and the indoor environment quality turns out to be a crucial factor to health, quality of life and well-being of the residents. The present study aims to understand how indoor environment relates with quality of life and how improving housing conditions impacts on individuals' health. DESIGN AND METHODS: This study case will rely on the following assessments in both rehabilitated and non-rehabilitated social housing: i) field measurements, in social dwellings (namely temperature, relative humidity, carbon dioxide concentration, air velocity, air change rate, level of mould spores and energy consumption); ii) residents' questionnaires on social, demogaphic, behavioural, health characteristics and quality of life. Also, iii) qualitative interviews performed with social housing residents from the rehabilitated houses, addressing the self-perception of living conditions and their influence in health status and quality of life. All the collected information will be combined and analysed in order to achieve the main objective. EXPECTED IMPACT: It is expected to define a Predicted Human Life Quality (PHLQ) index, that combines physical parameters describing the indoor environment measured through engineering techniques with residents' and neighbourhood quality of life characteristics assessed by health questionnaires. Improvement in social housing should be related with better health indicators and the new index might be an important tool contributing to enhance quality of life of the residents. Significance for public healthThis study will contribute to understand how indoor environment relates with quality of life and how improving housing conditions impacts on individuals' health, in social housing neighbourhoods. As so, it is important to share the undertaken methodology carried out by a multidisciplinary team, in order to allow other researchers following comparable studies to adopt a similar approach. The case study results will allow to define building rehabilitation policies, improving residents' quality of life and adding great contribution to public health promotion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA