RESUMO
The present paper aims at describing the fine structure of coeloconic sensilla located on the cutting valves of the endophytic ovipositor of two Odonata species, the anisopteran Aeshna cyanea (Aeshnidae) and the zygopteran Ischnura elegans (Coenagrionidae), by carrying out parallel investigations under SEM and TEM. In both species these coeloconic sensilla are innervated by four unbranched neurons forming four outer dendritic segments enveloped by the dendrite sheath. One dendrite terminates at the base of the peg forming a well developed tubular body, while the other three enter the peg after interruption of the dendrite sheath. The cuticle of the peg shows an apical pore and a joint membrane. This last feature, together with the tubular body and the suspension fibers, represent the mechanosensory components of the sensillum while the pore and the dendrites entering the peg allow chemoreception. The ultrastructural organization of these coeloconic sensilla is in agreement with the one reported for insect gustatory sensilla. Our investigation describes for the first time typical insect gustatory sensilla in Odonata. Electrophysiological and behavioral studies are needed to verify the role that these structures can perform in sensing the egg-laying substrata.
Assuntos
Odonatos/ultraestrutura , Animais , Feminino , Itália , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Sensilas/inervação , Sensilas/ultraestrutura , Especificidade da EspécieRESUMO
Here we describe the antennal lobe of Libellula depressa (Odonata, Libellulidae), identified on the basis of the projections of the afferent sensory neurons stemming from the antennal flagellum sensilla. Immunohistochemical neuropil staining as well as antennal backfills revealed sensory neuron terminal arborizations covering a large portion of the antennal lobe. No clear glomerular structure was identified, thus suggesting an aglomerular antennal lobe condition as previously reported in Palaeoptera. The terminal arbors of backfilled sensory neurons do, however, form spherical knots, probably representing the connections between the few afferent neurons and the antennal lobe interneurons. The reconstruction revealed that the proximal part of the antennal nerve is divided into two branches that innervate two spatially separated areas of the antennal lobe, an anterioventral lobe and a larger posteriodorsal lobe. Our data are consistent with the hypothesis that one tract of the antennal nerve of L. depressa contains olfactory sensory neurons projecting into one of the sublobes, while the other tract contains thermo-hygroreceptive neurons projecting into the other sublobe.
Assuntos
Odonatos/citologia , Sensilas/citologia , Células Receptoras Sensoriais/citologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Feminino , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Sensilas/inervaçãoRESUMO
The problem of olfaction in Paleoptera (Odonata, Ephemeroptera) cannot be considered fully elucidated until now. These insects have been traditionally considered anosmic, because their brain lacks glomerular antennal lobes, typically involved in Neoptera odor perception. In order to understand if the presumed coeloconic olfactory receptors described on the antennal flagellum of adult Odonata are really functioning, we performed an electrophysiological investigation with electroantennogram (EAG) and single cell recordings (SCR), using Libellula depressa L. (Odonata, Libellulidae) as a model species. Odors representing different chemical classes such as (Z)-3-hexenyl acetate (acetate ester), (E)-2-hexenal, octanal (aldehydes), (Z)-3-hexen-1-ol (alcohol), propionic acid, butyric acid (carboxylic acids), and 1,4-diaminobutane (amine) were tested. Most of the tested chemicals elicited depolarizing EAG responses in both male and female antennae; SCR show unambiguously for the first time the presence of olfactory neurons in the antennae of L. depressa and strongly support the olfactory function of the coeloconic sensilla located on the antennal flagellum of this species. Electrophysiological activity may not necessarily indicate behavioral activity, and the biological role of olfactory responses in Odonata must be determined in behavioral bioassays. This study represents a starting point for further behavioral, electrophysiological, neuroanatomical and molecular investigation on Odonata olfaction, a research field particularly interesting owing to the basal position of Paleoptera, also for tracing evolutionary trends in insect olfaction.