Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genes Dev ; 38(3-4): 151-167, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453480

RESUMO

By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.


Assuntos
Células-Tronco Adultas , Ácidos Cetoglutáricos , Camundongos , Animais , Ácidos Cetoglutáricos/metabolismo , Glutamina/metabolismo , Envelhecimento/fisiologia , Músculos , Músculo Esquelético
2.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949522

RESUMO

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Assuntos
Carboxiliases , Lúpus Eritematoso Sistêmico , Macrófagos , Camundongos Knockout , Succinatos , Animais , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Humanos , Feminino , Macrófagos/imunologia , Succinatos/farmacologia , Doenças Cardiovasculares/imunologia , Biomarcadores , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Adulto , Masculino , Modelos Animais de Doenças , Pessoa de Meia-Idade , Citocinas/metabolismo , Receptor 7 Toll-Like/metabolismo , Hidroliases
3.
Mol Cell ; 71(1): 129-141.e8, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979962

RESUMO

The enhancer regions of the myogenic master regulator MyoD give rise to at least two enhancer RNAs. Core enhancer eRNA (CEeRNA) regulates transcription of the adjacent MyoD gene, whereas DRReRNA affects expression of Myogenin in trans. We found that DRReRNA is recruited at the Myogenin locus, where it colocalizes with Myogenin nascent transcripts. DRReRNA associates with the cohesin complex, and this association correlates with its transactivating properties. Despite being expressed in undifferentiated cells, cohesin is not loaded on Myogenin until the cells start expressing DRReRNA, which is then required for cohesin chromatin recruitment and maintenance. Functionally, depletion of either cohesin or DRReRNA reduces chromatin accessibility, prevents Myogenin activation, and hinders muscle cell differentiation. Thus, DRReRNA ensures spatially appropriate cohesin loading in trans to regulate gene expression.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Proteínas Cromossômicas não Histona/biossíntese , Elementos Facilitadores Genéticos , Músculo Esquelético/metabolismo , Miogenina/biossíntese , RNA não Traduzido/metabolismo , Transcrição Gênica , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Humanos , Camundongos , Músculo Esquelético/citologia , Proteína MyoD/biossíntese , Proteína MyoD/genética , Miogenina/genética , RNA não Traduzido/genética , Coesinas
4.
Mol Cell ; 68(2): 398-413.e6, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033324

RESUMO

Spt6 coordinates nucleosome dis- and re-assembly, transcriptional elongation, and mRNA processing. Here, we report that depleting Spt6 in embryonic stem cells (ESCs) reduced expression of pluripotency factors, increased expression of cell-lineage-affiliated developmental regulators, and induced cell morphological and biochemical changes indicative of ESC differentiation. Selective downregulation of pluripotency factors upon Spt6 depletion may be mechanistically explained by its enrichment at ESC super-enhancers, where Spt6 controls histone H3K27 acetylation and methylation and super-enhancer RNA transcription. In ESCs, Spt6 interacted with the PRC2 core subunit Suz12 and prevented H3K27me3 accumulation at ESC super-enhancers and associated promoters. Biochemical as well as functional experiments revealed that Spt6 could compete for binding of the PRC2 methyltransferase Ezh2 to Suz12 and reduce PRC2 chromatin engagement. Thus, in addition to serving as a histone chaperone and transcription elongation factor, Spt6 counteracts repression by opposing H3K27me3 deposition at critical genomic regulatory regions.


Assuntos
Regulação para Baixo , Elementos Facilitadores Genéticos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética
5.
Ann Rheum Dis ; 83(11): 1549-1560, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902010

RESUMO

OBJECTIVES: Autoantibodies targeting intracellular proteins are common in various autoimmune diseases. In the context of myositis, the pathologic significance of these autoantibodies has been questioned due to the assumption that autoantibodies cannot enter living muscle cells. This study aims to investigate the validity of this assumption. METHODS: Confocal immunofluorescence microscopy was employed to localise antibodies and other proteins of interest in myositis muscle biopsies. Bulk RNA sequencing was used to examine the transcriptomic profiles of 669 samples, including those from patients with myositis, disease controls and healthy controls. Additionally, antibodies from myositis patients were introduced into cultured myoblasts through electroporation, and their transcriptomic profiles were analysed using RNA sequencing. RESULTS: In patients with myositis autoantibodies, antibodies accumulated inside myofibres in the same subcellular compartment as the autoantigen. Bulk RNA sequencing revealed that muscle biopsies from patients with autoantibodies targeting transcriptional regulators exhibited transcriptomic patterns consistent with dysfunction of the autoantigen. For instance, in muscle biopsies from patients with anti-PM/Scl autoantibodies recognising components of the nuclear RNA exosome complex, an accumulation of divergent transcripts and long non-coding RNAs was observed; these RNA forms are typically degraded by the nuclear RNA exosome complex. Introducing patient antibodies into cultured muscle cells recapitulated the transcriptomic effects observed in human disease. Further supporting evidence suggested that myositis autoantibodies recognising other autoantigens may also disrupt the function of their targets. CONCLUSIONS: This study demonstrates that, in myositis, autoantibodies are internalised into living cells, causing biological effects consistent with the disrupted function of their autoantigen.


Assuntos
Autoanticorpos , Autoantígenos , Miosite , Humanos , Autoanticorpos/imunologia , Miosite/imunologia , Miosite/patologia , Autoantígenos/imunologia , Transcriptoma , Estudos de Casos e Controles , Feminino , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Masculino , Pessoa de Meia-Idade , Microscopia Confocal , Biópsia
6.
J Immunol ; 209(4): 772-782, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35858733

RESUMO

Neutrophils are the most abundant leukocytes in human blood and are essential components of innate immunity. Until recently, neutrophils were considered homogeneous and transcriptionally inactive cells, but both concepts are being challenged. Single-cell RNA sequencing (scRNA-seq) offers an unbiased view of cells along a continuum of transcriptional states. However, the use of scRNA-seq to characterize neutrophils has proven technically difficult, explaining in part the paucity of published single-cell data on neutrophils. We have found that modifications to the data analysis pipeline, rather than to the existing scRNA-seq chemistries, can significantly increase the detection of human neutrophils in scRNA-seq. We have then applied a modified pipeline to the study of human peripheral blood neutrophils. Our findings indicate that circulating human neutrophils are transcriptionally heterogeneous cells, which can be classified into one of four transcriptional clusters that are reproducible among healthy human subjects. We demonstrate that peripheral blood neutrophils shift from relatively immature (Nh0) cells, through a transitional phenotype (Nh1), into one of two end points defined by either relative transcriptional inactivity (Nh2) or high expression of type I IFN-inducible genes (Nh3). Transitions among states are characterized by the expression of specific transcription factors. By simultaneously measuring surface proteins and intracellular transcripts at the single-cell level, we show that these transcriptional subsets are independent of the canonical surface proteins that are commonly used to define and characterize human neutrophils. These findings provide a new view of human neutrophil heterogeneity, with potential implications for the characterization of neutrophils in health and disease.


Assuntos
Neutrófilos , Análise de Célula Única , Humanos , Análise de Sequência de RNA , Análise de Dados , Proteínas de Membrana
7.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33108101

RESUMO

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Inflamação/genética , Mutação de Sentido Incorreto , Enzimas Ativadoras de Ubiquitina/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Exoma/genética , Genótipo , Arterite de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Síndromes Mielodisplásicas/genética , Poliarterite Nodosa/genética , Policondrite Recidivante/genética , Análise de Sequência de DNA , Síndrome de Sweet/genética , Síndrome
8.
Ann Rheum Dis ; 82(8): 1091-1097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37130727

RESUMO

OBJECTIVES: Myositis is a heterogeneous family of diseases including dermatomyositis (DM), immune-mediated necrotising myopathy (IMNM), antisynthetase syndrome (AS) and inclusion body myositis (IBM). Myositis-specific autoantibodies define different subtypes of myositis. For example, patients with anti-Mi2 autoantibodies targeting the chromodomain helicase DNA-binding protein 4 (CHD4)/NuRD complex (a transcriptional repressor) have more severe muscle disease than other DM patients. This study aimed to define the transcriptional profile of muscle biopsies from anti-Mi2-positive DM patients. METHODS: RNA sequencing was performed on muscle biopsies (n=171) from patients with anti-Mi2-positive DM (n=18), DM without anti-Mi2 autoantibodies (n=32), AS (n=18), IMNM (n=54) and IBM (n=16) as well as 33 normal muscle biopsies. Genes specifically upregulated in anti-Mi2-positive DM were identified. Muscle biopsies were stained for human immunoglobulin and protein products corresponding to genes specifically upregulated in anti-Mi2-positive muscle biopsies. RESULTS: A set of 135 genes, including SCRT1 and MADCAM1, was specifically overexpressed in anti-Mi2-positive DM muscle. This set was enriched for CHD4/NuRD-regulated genes and included genes that are not otherwise expressed in skeletal muscle. The expression levels of these genes correlated with anti-Mi2 autoantibody titres, markers of disease activity and with the other members of the gene set. In anti-Mi2-positive muscle biopsies, immunoglobulin was localised to the myonuclei, MAdCAM-1 protein was present in the cytoplasm of perifascicular fibres, and SCRT1 protein was localised to myofibre nuclei. CONCLUSIONS: Based on these findings, we hypothesise that anti-Mi2 autoantibodies could exert a pathogenic effect by entering damaged myofibres, inhibiting the CHD4/NuRD complex, and subsequently derepressing the unique set of genes defined in this study.


Assuntos
Doenças Autoimunes , Dermatomiosite , Miosite de Corpos de Inclusão , Miosite , Humanos , Autoanticorpos , Dermatomiosite/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Músculo Esquelético/patologia
9.
Ann Rheum Dis ; 82(6): 829-836, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801811

RESUMO

OBJECTIVES: Inflammatory myopathy or myositis is a heterogeneous family of immune-mediated diseases including dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotising myopathy (IMNM) and inclusion body myositis (IBM). Immune checkpoint inhibitors (ICIs) can also cause myositis (ICI-myositis). This study was designed to define gene expression patterns in muscle biopsies from patients with ICI-myositis. METHODS: Bulk RNA sequencing was performed on 200 muscle biopsies (35 ICI-myositis, 44 DM, 18 AS, 54 IMNM, 16 IBM and 33 normal muscle biopsies) and single nuclei RNA sequencing was performed on 22 muscle biopsies (seven ICI-myositis, four DM, three AS, six IMNM and two IBM). RESULTS: Unsupervised clustering defined three distinct transcriptomic subsets of ICI-myositis: ICI-DM, ICI-MYO1 and ICI-MYO2. ICI-DM included patients with DM and anti-TIF1γ autoantibodies who, like DM patients, overexpressed type 1 interferon-inducible genes. ICI-MYO1 patients had highly inflammatory muscle biopsies and included all patients that developed coexisting myocarditis. ICI-MYO2 was composed of patients with predominant necrotising pathology and low levels of muscle inflammation. The type 2 interferon pathway was activated both in ICI-DM and ICI-MYO1. Unlike the other types of myositis, all three subsets of ICI-myositis patients overexpressed genes involved in the IL6 pathway. CONCLUSIONS: We identified three distinct types of ICI-myositis based on transcriptomic analyses. The IL6 pathway was overexpressed in all groups, the type I interferon pathway activation was specific for ICI-DM, the type 2 IFN pathway was overexpressed in both ICI-DM and ICI-MYO1 and only ICI-MYO1 patients developed myocarditis.


Assuntos
Doenças Autoimunes , Dermatomiosite , Miocardite , Miosite de Corpos de Inclusão , Miosite , Humanos , Inibidores de Checkpoint Imunológico , Dermatomiosite/genética , Transcriptoma , Miocardite/patologia , Interleucina-6/metabolismo , Miosite/induzido quimicamente , Miosite/genética , Doenças Autoimunes/complicações , Interferons/genética , Músculo Esquelético/patologia
10.
Proc Natl Acad Sci U S A ; 117(28): 16481-16491, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601182

RESUMO

Differences between female and male immunity may contribute to variations in response to infections and predisposition to autoimmunity. We previously reported that neutrophils from reproductive-age males are more immature and less activated than their female counterparts. To further characterize the mechanisms that drive differential neutrophil phenotypes, we performed RNA sequencing on circulating neutrophils from healthy adult females and males. Female neutrophils displayed significant up-regulation of type I IFN (IFN)-stimulated genes (ISGs). Single-cell RNA-sequencing analysis indicated that these differences are neutrophil specific, driven by a distinct neutrophil subset and related to maturation status. Neutrophil hyperresponsiveness to type I IFNs promoted enhanced responses to Toll-like receptor agonists. Neutrophils from young adult males had significantly increased mitochondrial metabolism compared to those from females and this was modulated by estradiol. Assessment of ISGs and neutrophil maturation genes in Klinefelter syndrome (47, XXY) males and in prepubescent children supported that differences in neutrophil phenotype between adult male and female neutrophils are hormonally driven and not explained by X chromosome gene dosage. Our results indicate that there are distinct sex differences in neutrophil biology related to responses to type I IFNs, immunometabolism, and maturation status that may have prominent functional and pathogenic implications.


Assuntos
Interferon Tipo I/imunologia , Neutrófilos/imunologia , Adulto , Feminino , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/imunologia , Síndrome de Klinefelter/metabolismo , Masculino , Fatores Sexuais , Adulto Jovem
11.
Development ; 146(12)2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30890574

RESUMO

Dedicated stem cells ensure postnatal growth, repair and homeostasis of skeletal muscle. Following injury, muscle stem cells (MuSCs) exit from quiescence and divide to reconstitute the stem cell pool and give rise to muscle progenitors. The transcriptomes of pooled MuSCs have provided a rich source of information for describing the genetic programs of distinct static cell states; however, bulk microarray and RNA sequencing provide only averaged gene expression profiles, blurring the heterogeneity and developmental dynamics of asynchronous MuSC populations. Instead, the granularity required to identify distinct cell types, states, and their dynamics can be afforded by single cell analysis. We were able to compare the transcriptomes of thousands of MuSCs and primary myoblasts isolated from homeostatic or regenerating muscles by single cell RNA sequencing. Using computational approaches, we could reconstruct dynamic trajectories and place, in a pseudotemporal manner, the transcriptomes of individual MuSC within these trajectories. This approach allowed for the identification of distinct clusters of MuSCs and primary myoblasts with partially overlapping but distinct transcriptional signatures, as well as the description of metabolic pathways associated with defined MuSC states.


Assuntos
Homeostase , Músculo Esquelético/citologia , Regeneração , Análise de Célula Única/métodos , Células-Tronco/citologia , Animais , Separação Celular , Análise por Conglomerados , Biologia Computacional , Citometria de Fluxo , Genômica , Leucócitos Mononucleares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Análise de Sequência com Séries de Oligonucleotídeos , RNA-Seq , Análise de Sequência de RNA , Software , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 116(50): 25222-25228, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31754025

RESUMO

Neutrophil dysregulation is implicated in the pathogenesis of systemic lupus erythematosus (SLE). SLE is characterized by elevated levels of a pathogenic neutrophil subset known as low-density granulocytes (LDGs). The origin and phenotypic, functional, and pathogenic heterogeneity of LDGs remain to be systematically determined. Transcriptomics and epigenetic assessment of lupus LDGs, autologous normal-density neutrophils, and healthy control neutrophils was performed by bulk and single-cell RNA sequencing and assay for transposase-accessible chromatin sequencing. Functional readouts were compared among neutrophil subsets. SLE LDGs display significant transcriptional and epigenetic heterogeneity and comprise 2 subpopulations of intermediate-mature and immature neutrophils, with different degrees of chromatin accessibility and differences in transcription factor motif analysis. Differences in neutrophil extracellular trap (NET) formation, oxidized mitochondrial DNA release, chemotaxis, phagocytosis, degranulation, ability to harm the endothelium, and responses to type I interferon (IFN) stimulation are evident among LDG subsets. Compared with other immune cell subsets, LDGs display the highest expression of IFN-inducible genes. Distinct LDG subsets correlate with specific clinical features of lupus and with the presence and severity of coronary artery disease. Phenotypic, functional, and pathogenic neutrophil heterogeneity are prevalent in SLE and may promote immune dysregulation and prominent vascular damage characteristic of this disease.


Assuntos
Lúpus Eritematoso Sistêmico/genética , Neutrófilos/metabolismo , Adulto , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Epigênese Genética , Armadilhas Extracelulares/metabolismo , Feminino , Granulócitos/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Transcriptoma
13.
Mol Cell ; 51(5): 606-17, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23993744

RESUMO

Transcription factors and DNA regulatory binding motifs are fundamental components of the gene regulatory network. Here, by using genome-wide binding profiling, we show extensive occupancy of transcription factors of myogenesis (MyoD and Myogenin) at extragenic enhancer regions coinciding with RNA synthesis (i.e., eRNA). In particular, multiple regions were transcribed to eRNA within the regulatory region of MYOD1, including previously characterized distal regulatory regions (DRR) and core enhancer (CE). While (CE)RNA enhanced RNA polymerase II (Pol II) occupancy and transcription at MYOD1, (DRR)RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Proteína MyoD/metabolismo , Miogenina/metabolismo , RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Proteína MyoD/genética , Miogenina/genética , Regiões Promotoras Genéticas , RNA/biossíntese , RNA/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
14.
Genes Dev ; 25(8): 789-94, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498568

RESUMO

Satellite cells (SCs) sustain muscle growth and empower adult skeletal muscle with vigorous regenerative abilities. Here, we report that EZH2, the enzymatic subunit of the Polycomb-repressive complex 2 (PRC2), is expressed in both Pax7+/Myf5⁻ stem cells and Pax7+/Myf5+ committed myogenic precursors and is required for homeostasis of the adult SC pool. Mice with conditional ablation of Ezh2 in SCs have fewer muscle postnatal Pax7+ cells and reduced muscle mass and fail to appropriately regenerate. These defects are associated with impaired SC proliferation and derepression of genes expressed in nonmuscle cell lineages. Thus, EZH2 controls self-renewal and proliferation, and maintains an appropriate transcriptional program in SCs.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Imunoprecipitação da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste , Citometria de Fluxo , Imunofluorescência , Histona-Lisina N-Metiltransferase/genética , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Camundongos , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Complexo Repressor Polycomb 2
15.
Ann Rheum Dis ; 77(12): 1825-1833, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131320

RESUMO

OBJECTIVES: Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is characterised by flares of sterile arthritis with neutrophil infiltrate and the overproduction of interleukin (IL)-1ß. The purpose of this study was to elucidate the potential role of neutrophil subsets and neutrophil extracellular traps (NET) in the pathogenesis of PAPA. METHODS: Neutrophils and low-density granulocytes (LDG) were quantified by flow cytometry. Circulating NETs were measured by ELISA and PAPA serum was tested for the ability to degrade NETs. The capacity of NETs from PAPA neutrophils to activate macrophages was assessed. Skin biopsies were analysed for NETs and neutrophil gene signatures. RESULTS: Circulating LDGs are elevated in PAPA subjects. PAPA neutrophils and LDGs display enhanced NET formation compared with control neutrophils. PAPA sera exhibit impaired NET degradation and this is corrected with exogenous DNase1. Recombinant human IL-1ß induces NET formation in PAPA neutrophils but not healthy control neutrophils. NET formation in healthy control neutrophils is induced by PAPA serum and this effect is inhibited by the IL-1 receptor antagonist, anakinra. NETs from PAPA neutrophils and LDGs stimulate IL-6 release in healthy control macrophages. NETs are detected in skin biopsies of patients with PAPA syndrome in association with increased tissue IL-1ß, IL-8 and IL-17. Furthermore, LDG gene signatures are detected in PAPA skin. CONCLUSIONS: PAPA syndrome is characterised by an imbalance of NET formation and degradation that may enhance the half-life of these structures in vivo, promoting inflammation. Anakinra ameliorates NET formation in PAPA and this finding supports a role for IL-1 signalling in exacerbated neutrophil responses in this disease. The study also highlights other inflammatory pathways potentially pathogenic in PAPA, including IL-17 and IL-6, and these results may help guide new therapeutic approaches in this severe and often treatment-refractory condition.


Assuntos
Acne Vulgar/imunologia , Artrite Infecciosa/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Pioderma Gangrenoso/imunologia , Acne Vulgar/metabolismo , Adulto , Artrite Infecciosa/metabolismo , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Pioderma Gangrenoso/metabolismo
17.
JCI Insight ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480496

RESUMO

Cutaneous wound healing is a slow process that often terminates with permanent scarring while oral wounds, in contrast, regenerate damage faster. Unique molecular networks in epidermal and oral epithelial keratinocytes contribute to the tissue-specific response to wounding, but key factors that establish those networks and how the keratinocytes interact with their cellular environment remain to be elucidated. The transcription factor PITX1 is highly expressed in the oral epithelium but is undetectable in cutaneous keratinocytes. To delineate if PITX1 contributes to oral keratinocyte identity, cell-cell interactions, and the improved wound healing capabilities, we ectopically expressed PITX1 in the epidermis of murine skin. Using comparative analysis of murine skin and oral (buccal) mucosa with scRNA-seq and spatial transcriptomics, we found that PITX1 expression enhances epidermal keratinocyte migration, proliferation, and alters differentiation to a quasi-oral keratinocyte state. PITX1+ keratinocytes reprogram intercellular communication between skin-resident cells to mirror buccal tissue while also stimulating the influx of neutrophils that establish a pro-inflammatory environment. Furthermore, PITX1+ skin heals significantly faster than control skin via increased keratinocyte activation and migration and a tunable inflammatory environment. These results illustrate that PITX1 programs oral keratinocyte identity and cellular interactions while also revealing critical downstream networks that promote wound closure.

18.
Arthritis Rheumatol ; 76(10): 1501-1511, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38923259

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) increases cardiovascular disease (CVD) risk, and this is not explained by traditional risk factors. Characterization of blood immunologic signatures that associate with subclinical CVD and predict its progression has been challenging and may help identify subgroups at risk. METHODS: Patients with SLE (n = 77) and healthy controls (HCs) (n = 27) underwent assessments of arterial stiffness, vascular wall inflammation, and coronary atherosclerosis burden with cardio-ankle vascular index (CAVI); fluorodeoxyglucose-positron emission tomography/computed tomography (CT) (target-to-background ratio [TBR]); and coronary CT angiography. Whole blood bulk RNA sequencing was performed in a subset of study participants (HC n = 10, SLE n = 20). In a partially overlapping subset (HC n = 24, SLE n = 64), serum inflammatory protein biomarkers were quantified with an Olink platform. RESULTS: CAVI, TBR, and noncalcified coronary plaque burden (NCB) were increased in patients with SLE compared to HCs. When comparing patients with SLE with high CAVI scores to those with low CAVI scores or to HCs, there was a down-regulation of genes in pathways involved in the cell cycle and differentially regulated pathways related to metabolism. Distinct serum proteins associated with increased CAVI (CCL23, colony-stimulating factor 1, latency-activating peptide transforming growth factor ß1, interleukin 33 [IL-33], CD8A, and IL-12B), NCB (monocyte chemotactic protein 4 and FMS-like tyrosine kinase 3 ligand [Flt3L]), and TBR (CD5, IL-1α, AXIN1, cystatin D [CST5], and tumor necrosis factor receptor superfamily 9; P < 0.05). CONCLUSION: Blood gene expression patterns and serum proteins that associate with worse vascular phenotypes suggest dysregulated immune and metabolic pathways linked to premature CVD. Cytokines and chemokines identified in associations with arterial stiffness, inflammation, and NCB in SLE may allow for characterization of new CVD biomarkers in lupus.


Assuntos
Lúpus Eritematoso Sistêmico , Rigidez Vascular , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Rigidez Vascular/fisiologia , Biomarcadores/sangue , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/imunologia , Estudos de Casos e Controles , Interleucina-33/sangue
19.
bioRxiv ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39484535

RESUMO

Index hopping causes read assignment errors in data from multiplexed sequencing libraries. This issue has become more prevalent with the widespread use of high-capacity sequencers and highly multiplexed single-cell RNA sequencing (scRNA-seq) libraries. We conducted deep, plate-based scRNA-seq on a mixed population of mouse skin cells. Analysis of transcriptomes from 1152 cells identified four distinct cell types. To estimate the error rate in sample assignment due to index hopping, we employed differential expression analysis to identify signature genes that were highly and specifically expressed in each cell type. We quantified the proportion of misassigned reads by examining the detection rates of signature genes in other cell types. Remarkably, regardless of gene expression levels, we estimated that 0.65% of reads per gene were assigned to incorrect cell across our data. To computationally compensate for index hopping, we developed a simple correction method wherein, for each gene, 0.65% of the library's average expression level was subtracted from the expression of each cell. This correction had notable effects on transcriptome analyses, including increased cell-cell clustering distance and alterations in intermediate state assignments of cell differentiation. These findings underscore the potential impact of index hopping on experimental results. In conclusion, we devised a straightforward method to estimate and correct for the index hopping rate by quantifying misassigned genes in distinct cell types within an scRNA-seq library. This approach can be applied to any barcoded, multiplexed scRNA-seq library containing cells with distinct expression profiles, allowing for correction of the expression matrix before conducting biological analysis. AUTHOR SUMMARY: Index hopping causes errors in multiplexed high-throughput sequencing data whereby inaccurate barcoding leads to the misassignment of sequence reads to an incorrect source. This can result in gene expression assignments to the wrong cell in single-cell RNA sequencing (scRNA-seq). We performed scRNA-seq on sorted mouse skin cells and identified four distinct cell types based on gene expression profiles. Using genes unique to each cell type, we discovered that approximately 0.65% of total reads per gene were incorrectly assigned to another cell due to index hopping, regardless of gene expression levels. To correct for the misassigned reads, we proportionally adjusted each cell's gene expression data. Applying this correction improved analyses allowing for enhanced cell clustering accuracy and refining the identification of intermediate cell states during cell differentiation. Our study emphasizes the significance of index hopping in scRNA-seq experiments and presents a practical correction approach to remove misassigned reads that can be applied to any scRNA-seq study involving cells with distinct gene expression profiles or where non-expressed genes are introduced as a quality control measure during library preparation.

20.
Sci Adv ; 10(32): eadl4893, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121214

RESUMO

Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of chromatin spatial architecture and without affecting TATA box-binding protein (TBP) recruitment. These results indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks in single cells.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Redes Reguladoras de Genes , Fatores de Transcrição , Transcrição Gênica , Cromatina/metabolismo , Cromatina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Regulação da Expressão Gênica , Complexo Mediador/metabolismo , Complexo Mediador/genética , Análise de Célula Única , Transcriptoma , Coesinas , Proteínas que Contêm Bromodomínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA