Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Crit Rev Toxicol ; 53(4): 207-228, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401640

RESUMO

When registering a new pesticide, 90-day oral toxicity studies performed with both rodent and non-rodent species, typically rats and dogs, are part of a standard battery of animal tests required in most countries for human health risk assessment (RA). This analysis set out to determine the need for the 90-day dog study in RA by reviewing data from 195 pesticides evaluated by the US Environmental Protection Agency (USEPA) from 1998 through 2021. The dog study was used in RA for only 42 pesticides, mostly to set the point of departure (POD) for shorter-term non-dietary pesticide exposures. Dog no-observed-adverse-effect-levels (NOAELs) were lower than rat NOAELs in 90-day studies for 36 of the above 42 pesticides, suggesting that the dog was the more sensitive species. However, lower NOAELs may not necessarily correspond to greater sensitivity as factors such as dose spacing and/or allometric scaling need to be considered. Normalizing doses between rats and dogs explained the lower NOAELs in 22/36 pesticides, indicating that in those cases the dog was not more sensitive, and the comparable rat study could have been used instead for RA. For five of the remaining pesticides, other studies of appropriate duration besides the 90-day rat study were available that would have offered a similar level of protection if used to set PODs. In only nine cases could no alternative be found in the pesticide's database to use in place of the 90-day dog study for setting safe exposure levels or to identify unique hazards. The present analysis demonstrates that for most pesticide risk determinations the 90-day dog study provided no benefit beyond the rat or other available data.


Assuntos
Praguicidas , Estados Unidos , Ratos , Cães , Humanos , Animais , Praguicidas/toxicidade , Testes de Toxicidade , Nível de Efeito Adverso não Observado , Medição de Risco , United States Environmental Protection Agency
2.
Arch Toxicol ; 96(9): 2419-2428, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35701604

RESUMO

Concern over substances that may cause cancer has led to various classification schemes to recognize carcinogenic threats and provide a basis to manage those threats. The least useful schemes have a binary choice that declares a substance carcinogenic or not. This overly simplistic approach ignores the complexity of cancer causation by considering neither how the substance causes cancer, nor the potency of that mode of action. Consequently, substances are classified simply as "carcinogenic", compromising the opportunity to properly manage these kinds of substances. It will likely be very difficult, if not impossible, to incorporate New Approach Methodologies (NAMs) into binary schemes. In this paper we propose a new approach cancer classification scheme that segregates substances by both mode of action and potency into three categories and, as a consequence, provides useful guidance in the regulation and management of substances with carcinogenic potential. Examples are given, including aflatoxin (category A), trichlorethylene (category B), and titanium dioxide (category C), which demonstrate the clear differentiation among these substances that generate appropriate levels of concern and management options.


Assuntos
Carcinógenos , Neoplasias , Carcinógenos/toxicidade , Humanos , Neoplasias/induzido quimicamente , Medição de Risco
3.
Arch Toxicol ; 95(11): 3611-3621, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34559250

RESUMO

The long running controversy about the relative merits of hazard-based versus risk-based approaches has been investigated. There are three levels of hazard codification: level 1 divides chemicals into dichotomous bands of hazardous and non-hazardous; level 2 divides chemicals into bands of hazard based on severity and/or potency; and level 3 places each chemical on a continuum of hazard based on severity and/or potency. Any system which imposes compartments onto a continuum will give rise to issues at the boundaries, especially with only two compartments. Level 1 schemes are only justifiable if there is no variation in severity, or potency or if there is no threshold. This is the assumption implicit in GHS/EU classification for carcinogenicity, reproductive toxicity and mutagenicity. However, this assumption has been challenged. Codification level 2 hazard assessments offer a range of choices and reduce the built-in conflict inherent in the level 1 process. Level 3 assessments allow a full range of choices between the extremes and reduce the built-in conflict even more. The underlying reason for the controversy between hazard and risk is the use of level 1 hazard codification schemes in situations where there are ranges of severity and potency which require the use of level 2 or level 3 hazard codification. There is not a major difference between level 2 and level 3 codification, and they can both be used to select appropriate risk management options. Existing level 1 codification schemes should be reviewed and developed into level 2 schemes where appropriate.


Assuntos
Substâncias Perigosas/classificação , Medição de Risco/métodos , Carcinogênese , União Europeia , Humanos , Mutagênese , Reprodução/efeitos dos fármacos , Medição de Risco/legislação & jurisprudência , Gestão de Riscos/métodos
4.
Regul Toxicol Pharmacol ; 103: 124-129, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30660801

RESUMO

Developments in the understanding of the etiology of cancer have undermined the 1970s concept that chemicals are either "carcinogens" or "non-carcinogens". The capacity to induce cancer should not be classified in an inflexible binary manner as present (carcinogen) or absent (non-carcinogen). Chemicals may induce cancer by three categories of mode of action: direct interaction with DNA or DNA replication including DNA repair and epigenetics; receptor-mediated induction of cell division; and non-specific induction of cell division. The long-term rodent bioassay is neither appropriate nor efficient to evaluate carcinogenic potential for humans and to inform risk management decisions. It is of questionable predicitiveness, expensive, time consuming, and uses hundreds of animals. Although it has been embedded in practice for over 50 years, it has only been used to evaluate less than 5% of chemicals that are in use. Furthermore, it is not reproducible because of the probabilisitic nature of the process it is evaluating combined with dose limiting toxicity, dose selection, and study design. The modes of action that lead to the induction of tumors are already considered under other hazardous property categories in classification (Mutagenicity/Genotoxicity and Target Organ Toxicity); a separate category for Carcinogenicity is not required and provides no additional public health protection.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/classificação , Carcinógenos/farmacologia , Animais , Testes de Carcinogenicidade , Carcinógenos/toxicidade , Humanos , Reprodutibilidade dos Testes
5.
Regul Toxicol Pharmacol ; 103: 86-92, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634023

RESUMO

Developments in the understanding of the etiology of cancer have profound implications for the way the carcinogenicity of chemicals is addressed. This paper proposes a unified theory of carcinogenesis that will illuminate better ways to evaluate and regulate chemicals. In the last four decades, we have come to understand that for a cell and a group of cells to begin the process of unrestrained growth that is defined as cancer, there must be changes in DNA that reprogram the cell from normal to abnormal. Cancer is the consequence of DNA coding errors that arise either directly from mutagenic events or indirectly from cell proliferation especially if sustained. Chemicals that act via direct interaction with DNA can induce cancer because they cause mutations which can be carried forward in dividing cells. Chemicals that act via non-genotoxic mechanisms must be dosed to maintain a proliferative environment so that the steps toward neoplasia have time to occur. Chemicals that induce increased cellular proliferation can be divided into two categories: those which act by a cellular receptor to induce cellular proliferation, and those which act via non-specific mechanisms such as cytotoxicity. This knowledge has implications for testing chemicals for carcinogenic potential and risk management.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/química , Carcinógenos/farmacologia , Neoplasias/induzido quimicamente , Animais , DNA de Neoplasias/efeitos dos fármacos , Humanos
6.
Regul Toxicol Pharmacol ; 103: 100-105, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634021

RESUMO

Over 50 years, we have learned a great deal about the biology that underpins cancer but our approach to testing chemicals for carcinogenic potential has not kept up. Only a small number of chemicals has been tested in animal-intensive, time consuming, and expensive long-term bioassays in rodents. We now recommend a transition from the bioassay to a decision-tree matrix that can be applied to a broader range of chemicals, with better predictivity, based on the premise that cancer is the consequence of DNA coding errors that arise either directly from mutagenic events or indirectly from sustained cell proliferation. The first step is in silico and in vitro assessment for mutagenic (DNA reactive) activity. If mutagenic, it is assumed to be carcinogenic unless evidence indicates otherwise. If the chemical does not show mutagenic potential, the next step is assessment of potential human exposure compared to the threshold for toxicological concern (TTC). If potential human exposure exceeds the TTC, then testing is done to look for effects associated with the key characteristics that are precursors to the carcinogenic process, such as increased cell proliferation, immunosuppression, or significant estrogenic activity. Protection of human health is achieved by limiting exposures to below NOEALs for these precursor effects. The decision tree matrix is animal-sparing, cost effective, and in step with our growing knowledge of the process of cancer formation.


Assuntos
Carcinogênese/induzido quimicamente , Testes de Carcinogenicidade , Carcinógenos/química , Humanos , Medição de Risco
7.
Regul Toxicol Pharmacol ; 86: 205-220, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28232103

RESUMO

The evolved World Health Organization/International Programme on Chemical Safety mode of action (MOA) framework provides a structure for evaluating evidence in pathways of causally linked key events (KE) leading to adverse health effects. Although employed globally, variability in use of the MOA framework has led to different interpretations of the sufficiency of evidence in support of hypothesized MOAs. A proof of concept extension of the MOA framework is proposed for scoring confidence in the supporting data to improve scientific justification for MOA use in characterizing hazards and selecting dose-response extrapolation methods for specific chemicals. This involves selecting hypothesized MOAs, and then, for each MOA, scoring the weight of evidence (WOE) in support of causality for each KE using evolved Bradford Hill causal considerations (biological plausibility, essentiality, dose-response concordance, consistency, and analogy). This early proof of concept method is demonstrated by comparing two potential MOAs (mutagenicity and peroxisome proliferator activated receptor-alpha) for clofibrate, a rodent liver carcinogen. Quantitative confidence scoring of hypothesized MOAs is shown to be useful in characterizing the likely operative MOA. To guide method refinement and future confidence scoring for a spectrum of MOAs, areas warranting further focus and lessons learned, including the need to incorporate a narrative discussion of the weights used in the evaluation and an overall evaluation of the plausibility of the outcome, are presented.


Assuntos
Carcinógenos/toxicidade , Segurança Química , Clofibrato/toxicidade , Testes de Mutagenicidade , Estudo de Prova de Conceito , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , PPAR alfa/metabolismo , Medição de Risco
8.
Toxicol Pathol ; 44(6): 810-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27102650

RESUMO

The identification of adverse health effects has a central role in the development and risk/safety assessment of chemical entities and pharmaceuticals. There is currently a need for better alignment regarding how nonclinical adversity is determined and characterized. The European Society of Toxicologic Pathology (ESTP) therefore coordinated a workshop to review available definitions of adversity, weigh determining and qualifying factors of adversity based on case examples, and recommend a practical approach to define and characterize adversity in toxicology reports, to serve as a valuable prerequisite for future organ- or lesion-specific workshops planned by the ESTP.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Toxicologia/normas , Animais , Guias como Assunto , Humanos , Medição de Risco , Fenômenos Toxicológicos
9.
Regul Toxicol Pharmacol ; 82: 158-166, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27780763

RESUMO

Classification schemes for carcinogenicity based solely on hazard-identification such as the IARC monograph process and the UN system adopted in the EU have become outmoded. They are based on a concept developed in the 1970s that chemicals could be divided into two classes: carcinogens and non-carcinogens. Categorization in this way places into the same category chemicals and agents with widely differing potencies and modes of action. This is how eating processed meat can fall into the same category as sulfur mustard gas. Approaches based on hazard and risk characterization present an integrated and balanced picture of hazard, dose response and exposure and allow informed risk management decisions to be taken. Because a risk-based decision framework fully considers hazard in the context of dose, potency, and exposure the unintended downsides of a hazard only approach are avoided, e.g., health scares, unnecessary economic costs, loss of beneficial products, adoption of strategies with greater health costs, and the diversion of public funds into unnecessary research. An initiative to agree upon a standardized, internationally acceptable methodology for carcinogen assessment is needed now. The approach should incorporate principles and concepts of existing international consensus-based frameworks including the WHO IPCS mode of action framework.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/classificação , Carcinógenos/toxicidade , Terminologia como Assunto , Alternativas aos Testes com Animais , Animais , Bioensaio , Relação Dose-Resposta a Droga , Humanos , Reprodutibilidade dos Testes , Medição de Risco , Especificidade da Espécie
10.
J Nutr ; 142(12): 2192S-2198S, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23096006

RESUMO

To advance the utility and predictability of safety evaluation, an integrated approach that relies on all existing knowledge to understand how agents perturb normal biological function or structure is needed to progress more focused evaluation strategies. The mode of action (MOA)-human relevance framework developed by the International Program for Chemical Safety and The International Life Sciences Institute provides a useful analytical approach where different lines of evidence (e.g., in vitro, in vivo) can be organized, linked, and integrated at different levels of biological organization into a more efficient, hypothesis-driven approach to safety evaluation. This framework provides a weight-of-evidence approach based on considerations for causality (as originally articulated by Bradford Hill), including dose response and temporal concordance, consistency, specificity, and biological plausibility and coherence. Once an animal MOA and its key events are established, qualitative and quantitative comparisons between experimental animals and humans are made based on the key events. This comparison enables a conclusion as to whether the MOA is likely operative in humans and, if so, whether it can result in a more refined hazard and dose-response assessment. This framework provides an important tool to promote and formalize the use of MOA data in safety evaluation regardless of whether the information comes from traditional or novel approaches, such as those recommended by the NRC in its 2007 report "Toxicity Testing in the 21st Century," which recommends moving away from traditional approaches of measuring adverse endpoints by using newer technologies to identify ways agents may considerably perturb cellular pathways to produce their toxicity.


Assuntos
Segurança Química , Medição de Risco , Animais , Relação Dose-Resposta a Droga , Humanos
12.
Crit Rev Toxicol ; 40(1): 16-23, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20144133

RESUMO

Prior to October 2007, the US Environmental Protection Agency (EPA) required both 13-week and 1-year studies in Beagle dogs be submitted in support of registration for pesticides. Following an extensive retrospective analysis, we (the authors) determined that the 1-year toxicity dog study should be eliminated as a requirement for pesticide registration. The present work presents this retrospective analysis of results from 13-week and 1-year dog studies for 110 conventional pesticide chemicals, representing more than 50 classes of pesticides. The data were evaluated to determine if the 13-week dog study, in addition to the long-term studies in two rodent species (mice and rats), were sufficient for the identification of no observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) for the derivation of chronic reference doses (RfD). Only pesticides with adequate 13-week and 1-year duration studies were included in the present evaluation. Toxicity endpoints and dose-response data from 13-week and 1-year studies were compared. The analysis showed that 70 of the 110 pesticides had similar critical effects regardless of duration and had NOAELs and LOAELs within a difference of 1.5-fold of each other. For the remaining 40 pesticides, 31 had lower NOAELs and LOAELs in the 1-year study, primarily due to dose selection and spacing. In only 2% of the cases were additional toxic effects identified in the 1-year study that were not observed in the 13-week study and/or in the rodent studies. In 8% of the cases, the 1-year dog had a lower NOAEL and/or LOAEL than the 13-week study, but there would have been no regulatory impact if the 1-year dog study had not been performed because adequate data were available from the other required studies. A dog toxicity study beyond 13-weeks does not have significant impact on the derivation of a chronic RfD for pesticide risk assessment.


Assuntos
Praguicidas/toxicidade , Testes de Toxicidade/métodos , Animais , Cães , Humanos , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Estudos Retrospectivos , Medição de Risco/métodos , Especificidade da Espécie , Fatores de Tempo
13.
J Toxicol Environ Health B Crit Rev ; 13(2-4): 347-60, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20574907

RESUMO

Significant advances have been made in human health and ecological risk assessment over the last decade. Substantial challenges, however, remain in providing credible scientific information in a timely and efficient manner to support chemical risk assessment and management decisions. A major challenge confronting risk managers is the need for critical information to address risk uncertainties in large chemical inventories such as high- and medium-production-volume industrial chemicals or pesticide inert ingredients. From a strategic and tactical viewpoint, an integrated approach that relies on all existing knowledge and uses a range of methods, including those from emerging and novel technologies, is needed to advance progressive and focused testing strategies, as well as to advance the utility and predictability of the risk assessment by providing more relevant information. A hypothesis-based approach that draws on all relevant information is consistent with the vision articulated in the 2007 report by the National Research Council, Toxicity Testing in the 21st Century: A Vision and a Strategy. This article describes the current practices in evaluating chemical risks and ongoing efforts to enhance the quality and efficiency of risk assessment and risk management decisions within the Office of Prevention, Pesticides, and Toxic Substances at the U.S. Environmental Protection Agency.


Assuntos
Exposição Ambiental/análise , Exposição Ambiental/prevenção & controle , Poluentes Ambientais/toxicidade , Gestão de Riscos/métodos , Testes de Toxicidade/métodos , Tomada de Decisões , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/química , Humanos , Medição de Risco/métodos , Incerteza , Estados Unidos , United States Environmental Protection Agency
14.
Mutat Res ; 633(2): 67-79, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17616430

RESUMO

In vitro genotoxicity assays are often used to screen and predict whether chemicals might represent mutagenic and carcinogenic risks for humans. Recent discussions have focused on the high rate of positive results in in vitro tests, especially in those assays performed in mammalian cells that are not confirmed in vivo. Currently, there is no general consensus in the scientific community on the interpretation of the significance of positive results from the in vitro genotoxicity assays. To address this issue, the Health and Environmental Sciences Institute (HESI), held an international workshop in June 2006 to discuss the relevance and follow-up of positive results in in vitro genetic toxicity assays. The goals of the meeting were to examine ways to advance the scientific basis for the interpretation of positive findings in in vitro assays, to facilitate the development of follow-up testing strategies and to define criteria for determining the relevance to human health. The workshop identified specific needs in two general categories, i.e., improved testing and improved data interpretation and risk assessment. Recommendations to improve testing included: (1) re-examine the maximum level of cytotoxicity currently required for in vitro tests; (2) re-examine the upper limit concentration for in vitro mammalian studies; (3) develop improved testing strategies using current in vitro assays; (4) define criteria to guide selection of the appropriate follow-up in vivo studies; (5) develop new and more predictive in vitro and in vivo tests. Recommendations for improving interpretation and assessment included: (1) examine the suitability of applying the threshold of toxicological concern concepts to genotoxicity data; (2) develop a structured weight of evidence approach for assessing genotoxic/carcinogenic hazard; and (3) re-examine in vitro and in vivo correlations qualitatively and quantitatively. Conclusions from the workshop highlighted a willingness of scientists from various sectors to change and improve the current paradigm and move from a hazard identification approach to a "realistic" risk-based approach that incorporates information on mechanism of action, kinetics, and human exposure..


Assuntos
Interpretação Estatística de Dados , Testes de Mutagenicidade , Animais , Relação Dose-Resposta a Droga , Seguimentos , Humanos , Testes de Mutagenicidade/normas , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , Reprodutibilidade dos Testes , Medição de Risco
15.
Toxicol Sci ; 89(1): 51-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16221960

RESUMO

Hazard identification and risk assessment paradigms depend on the presumption of the similarity of rodents to humans, yet species specific responses, and the extrapolation of high-dose effects to low-dose exposures can affect the estimation of human risk from rodent data. As a consequence, a human relevance framework concept was developed by the International Programme on Chemical Safety (IPCS) and International Life Sciences Institute (ILSI) Risk Science Institute (RSI) with the central tenet being the identification of a mode of action (MOA). To perform a MOA analysis, the key biochemical, cellular, and molecular events need to first be established, and the temporal and dose-dependent concordance of each of the key events in the MOA can then be determined. The key events can be used to bridge species and dose for a given MOA. The next step in the MOA analysis is the assessment of biological plausibility for determining the relevance of the specified MOA in an animal model for human cancer risk based on kinetic and dynamic parameters. Using the framework approach, a MOA in animals could not be defined for metal overload. The MOA for phenobarbital (PB)-like P450 inducers was determined to be unlikely in humans after kinetic and dynamic factors were considered. In contrast, after these factors were considered with reference to estrogen, the conclusion was drawn that estrogen-induced tumors were plausible in humans. Finally, it was concluded that the induction of rodent liver tumors by porphyrogenic compounds followed a cytotoxic MOA, and that liver tumors formed as a result of sustained cytotoxicity and regenerative proliferation are considered relevant for evaluating human cancer risk if appropriate metabolism occurs in the animal models and in humans.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Modelos Animais de Doenças , Neoplasias Hepáticas/etiologia , Toxicologia/educação , Animais , Carcinógenos/classificação , Carcinógenos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cooperação Internacional , Neoplasias Hepáticas/patologia , Camundongos , Ratos , Medição de Risco , Especificidade da Espécie
16.
Environ Health Perspect ; 124(8): 1127-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26862984

RESUMO

BACKGROUND: Many reports have been published that contain recommendations for improving the quality, transparency, and usefulness of decision making for risk assessments prepared by agencies of the U.S. federal government. A substantial measure of consensus has emerged regarding the characteristics that high-quality assessments should possess. OBJECTIVE: The goal was to summarize the key characteristics of a high-quality assessment as identified in the consensus-building process and to integrate them into a guide for use by decision makers, risk assessors, peer reviewers and other interested stakeholders to determine if an assessment meets the criteria for high quality. DISCUSSION: Most of the features cited in the guide are applicable to any type of assessment, whether it encompasses one, two, or all four phases of the risk-assessment paradigm; whether it is qualitative or quantitative; and whether it is screening level or highly sophisticated and complex. Other features are tailored to specific elements of an assessment. Just as agencies at all levels of government are responsible for determining the effectiveness of their programs, so too should they determine the effectiveness of their assessments used in support of their regulatory decisions. Furthermore, if a nongovernmental entity wishes to have its assessments considered in the governmental regulatory decision-making process, then these assessments should be judged in the same rigorous manner and be held to similar standards. CONCLUSIONS: The key characteristics of a high-quality assessment can be summarized and integrated into a guide for judging whether an assessment possesses the desired features of high quality, transparency, and usefulness. CITATION: Fenner-Crisp PA, Dellarco VL. 2016. Key elements for judging the quality of a risk assessment. Environ Health Perspect 124:1127-1135; http://dx.doi.org/10.1289/ehp.1510483.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Tomada de Decisões , Medicina Baseada em Evidências , Humanos , Medição de Risco
17.
Food Chem Toxicol ; 43(11): 1569-93, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16040182

RESUMO

This paper summarises and extends the work developed over the last decade by the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) for acute health risk assessment of agricultural pesticides. The general considerations in setting of acute reference doses (ARfDs) in a step-wise process, as well as specific considerations and guidance regarding selected toxicological endpoints are described in detail. The endpoints selected are based on the practical experience with agricultural pesticides by the JMPR and are not a comprehensive listing of all possible relevant endpoints. Haematotoxicity, immunotoxicity, neurotoxicity, liver and kidney toxicity, endocrine effects as well as developmental effects are taken into account as acute toxic alerts, relevant for the consideration of ARfDs for pesticides. The general biological background and the data available through standard toxicological testing for regulatory purposes, interpretation of the data, conclusions and recommendations for future improvements are described for each relevant endpoint. The paper also considers a single dose study protocol. This type of study is not intended to be included in routine toxicological testing for regulatory purposes, but rather to guide further testing when the current database indicates the necessity for an ARfD but does not allow a reliable derivation of the value.


Assuntos
Contaminação de Alimentos/análise , Praguicidas/análise , Praguicidas/toxicidade , Animais , Órgãos Governamentais , Humanos , Valores de Referência
18.
Environ Health Perspect ; 110 Suppl 1: 75-87, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11834465

RESUMO

Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. To prioritize research efforts, an in-depth, mechanism-based structure-activity relationship analysis, supplemented by extensive literature search for genotoxicity and other data, was conducted for ranking the carcinogenic potential of DBPs that met the following criteria: a) detected in actual drinking water samples, b) have insufficient cancer bioassay data for risk assessment, and c) have structural features/alerts or short-term predictive assays indicative of carcinogenic potential. A semiquantitative concern rating scale of low, marginal, low-moderate, moderate, high-moderate, and high was used along with delineation of scientific rationale. Of the 209 DBPs analyzed, 20 were of priority concern with a moderate or high-moderate rating. Of these, four were structural analogs of MX and five were haloalkanes that presumably will be controlled by existing and future THM regulations. The other eleven DBPs, which included halonitriles (6), haloketones (2), haloaldehyde (1), halonitroalkane (1), and dialdehyde (1), are suitable priority candidates for future carcinogenicity testing and/or mechanistic studies.


Assuntos
Carcinógenos/efeitos adversos , Desinfetantes/efeitos adversos , Abastecimento de Água , Animais , Animais de Laboratório , Bioensaio , Compostos Clorados/efeitos adversos , Dano ao DNA , Desinfetantes/química , Humanos , Testes de Mutagenicidade , Medição de Risco , Relação Estrutura-Atividade , Trialometanos/efeitos adversos , Purificação da Água
19.
Toxicol Sci ; 78(2): 181-6, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14737005

RESUMO

Defining the mode(s) of action by which chemicals induce tumors in laboratory animals has become a key to judgments about the relevance of such tumor data for human risk assessment. Frameworks for analyzing mode of action information appear in recent U.S. EPA and IPCS publications relating to cancer risk assessment. This FORUM paper emphasizes that mode of action analytical frameworks depend on both qualitative and quantitative evaluations of relevant data and information: (1) presenting key events in the animal mode of action, (2) developing a "concordance" table for side-by-side comparison of key events as defined in animal studies with comparable information from human systems, and (3) using data and information from mode of action analyses, as well as information on relative sensitivity and exposure, to make weight-of-evidence judgments about the relevance of animal tumors for human cancer assessments. The paper features a systematic analysis for using mode of action information from animal and human studies, based in part on case examples involving environmental chemicals and pharmaceuticals.


Assuntos
Animais de Laboratório , Carcinógenos Ambientais/toxicidade , Neoplasias Experimentais/etiologia , Neoplasias/etiologia , Medição de Risco/métodos , Xenobióticos/toxicidade , Animais , Carcinógenos Ambientais/classificação , Guias como Assunto , Humanos , Agências Internacionais/normas , Cooperação Internacional , Neoplasias/induzido quimicamente , Neoplasias Experimentais/induzido quimicamente , Estados Unidos , United States Environmental Protection Agency/normas , Xenobióticos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA