Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Endocrinology ; 145(2): 736-42, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14592957

RESUMO

Neurokinin B (NKB) gene expression is elevated in the infundibular (arcuate) nucleus of the hypothalamus in postmenopausal women. Estrogen replacement decreases both the number of NKB mRNA-expressing neurons and the level of expression within individual cells. Similarly, NKB gene expression is elevated in ovariectomized rats and reduced after estrogen treatment. The actions of estrogen in the brain can be mediated via either estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). In the rodent arcuate nucleus (ARC), more ERalpha- than ERbeta-containing cells are present, suggesting that ERalpha might be directly responsible for estrogen regulation of NKB gene expression. However, an indirect effect via ERbeta could not be ruled out. Here we used ERalpha knockout and ERbeta knockout mice to identify the type of ER responsible for mediating estrogen action on NKB gene expression in the ARC. Using in situ hybridization histochemistry, we have found that estrogen treatment significantly reduced NKB gene expression in the ARC of ovariectomized ERbeta knockout mice, but had no effect on NKB mRNA levels in ERalpha knockout mice. These data indicate that ERalpha mediates the increase in NKB gene expression associated with ovariectomy in rodents and might also be responsible for the increase in NKB in postmenopausal women.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neurocinina B/genética , Receptores de Estrogênio/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/química , Núcleo Arqueado do Hipotálamo/citologia , Receptor alfa de Estrogênio , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/química , Ovariectomia , RNA Mensageiro/análise , Receptores de Estrogênio/análise , Receptores de Estrogênio/deficiência
2.
Endocrinology ; 143(5): 1643-50, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11956145

RESUMO

Early studies found estrogen-binding sites in the ER knockout (ERalphaKO) mouse brain, suggesting a splice variant of ERalpha or another ER. The discovery of ERbeta suggested that binding was due to ERbeta, although questions about an ERgamma remained. To test this hypothesis, ERbetaKO mice were generated and crossed with ERalphaKO mice, and ERalpha/betaKO animals were used for in vivo binding studies with [(125)I]estrogen. The results revealed nuclear binding sites in the ERalpha/betaKO hypothalamus and amygdala. As the binding resembled the distribution of ERalpha, we evaluated the presence of ERalpha splicing variants. A nonphysiological splice variant of ERalpha was identified in ERalpha/betaKO brain and uterus, but was absent in wild-type mice. ERalpha immunoreactivity was also detected in regions of ERalpha/betaKO brain where residual binding was seen. To ascertain the functionality of the variant, the regulation of PR was assessed in brain. The results revealed that E2 significantly increased PR expression, an indication that the variant can regulate gene transcription. These data demonstrate the presence and functionality of an ERalpha variant in ERalpha/betaKO brain and suggest that the residual binding and regulation of PR in ERalpha/betaKO brain can be accounted for by the variant.


Assuntos
Química Encefálica/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Autorradiografia , Sequência de Bases , Sítios de Ligação , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Comp Neurol ; 473(2): 270-91, 2004 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15101093

RESUMO

Although the distribution of estrogen receptor beta (ERbeta) immunoreactivity in the rat central nervous has been reported, no such data are available in the mouse. The present study used in vivo autoradiography utilizing a (125)I-estrogen that has equal binding affinity for both receptors as well as immunohistochemistry for ERbeta and ERalpha, to investigate and compare the distribution of the two ERs in the mouse CNS. The use specific antisera against ERalpha and ERbeta allowed us to evaluate the contribution of these receptors to the binding detected with autoradiography. In addition, data were collected in ovariectomized wildtype and ERalpha KO (knockout) mice to examine developmental regulation of ERbeta expression by ERalpha. These studies revealed that in the mouse CNS, combining immunoreactivity for ERalpha with that for ERbeta accounted for all regions where binding was seen using autoradiography. Therefore, these data strongly suggest that the major contributors of estrogen binding in the mouse CNS are ERalpha and ERbeta. Together, these data provide an anatomical foundation for future studies and advance our understanding of estrogen action in the CNS. Moreover, since the immunocytochemical images were similar in wildtype and ERalpha KO mice, these studies suggest that the lack of ERalpha does not influence the expression of ERbeta in the central nervous system.


Assuntos
Sistema Nervoso Central/química , Receptores de Estrogênio/análise , Animais , Autorradiografia , Sistema Nervoso Central/metabolismo , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovariectomia , Receptores de Estrogênio/biossíntese , Receptores de Estrogênio/deficiência
4.
Prog Brain Res ; 139: 15-29, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12436923

RESUMO

Oxytocin is an important modulator of female reproductive functions including parturition, lactation and maternal behavior, while vasopressin regulates water balance and acts as a neurotransmitter. For decades, it has been suggested that estrogen regulates the production and/or release of oxytocin and vasopressin in the rodent brain. Although several studies demonstrated that estrogen can modulate vasopressin mRNA levels in regions known to contain estrogen receptor (ER), such as the bed nucleus of the stria terminalis and medial amygdala, data from the paraventricular and supraoptic nuclei were inconclusive. Since early immunohistochemical and in situ hybridization studies revealed few, if any, ER containing cells in these hypothalamic nuclei, it was thought that oxytocin and vasopressin were not directly regulated by estrogen. The discovery of a second ER (ER-beta) in the late 1990s suggested that estrogen could act in many brain regions heretofore not considered targets for estrogen action. Initial in situ hybridization studies revealed a wide distribution of ER-beta mRNA in the rat brain including neurons of the supraoptic nucleus and the parvocellular and magnocellular divisions of the paraventricular nucleus. Subsequent double-label in situ hybridization/immunocytochemistry studies showed that ER-beta mRNA was present in oxytocin and vasopressin neurons, with the degree of colocalization being both neuropeptide and region specific. In an attempt to demonstrate that ER-beta mRNA was translated into a biologically active protein, a series of in vivo binding studies were conducted in rats with 125I-estrogen. These data revealed the presence of nuclear estrogen binding sites in neurons of the magnocellular system indicating that ER-beta mRNA was translated into protein. Concurrent studies in mice found that the distribution of ER-beta mRNA and 125I-estrogen binding was similar to rats, although there were some notable differences. For example, ER-beta mRNA and binding were not detected in the mouse supraoptic nucleus and although ER-beta was the principle ER in the paraventricular nucleus, ER-alpha was also present. The prevalence of ERs in the mouse paraventricular nucleus was further investigated using ER-alpha and ER-beta knockout mice for in vivo binding studies with 125I-estrogen. The results of these studies showed that ER-beta was the predominant ER in the paraventricular nucleus and confirmed the presence of ER-beta in other brain regions. Moreover, our group recently generated and characterized several polyclonal antisera raised against the C-terminus of ER-beta. Through the use of these antisera, we have confirmed the presence of ER-beta in the rat paraventricular and supraoptic nuclei and shown that ER-beta is colocalized, in part, with oxytocin and vasopressin. To assess the ability of estrogen to modulate the expression of oxytocin mRNA, ovariectomized rats were treated with vehicle or estradiol and the brains processed for in situ hybridization. The results of these studies revealed that estradiol down-regulated oxytocin mRNA in the rat paraventricular nucleus within 6 h of treatment. Together these data and the observation that some of the oxytocin and vasopressin neurons contain ER-beta suggest that estrogen, acting through ER-beta, may directly regulate oxytocin gene expression. However, since the paraventricular nucleus has many subdivisions with different projections and the degree of colocalization of ER-beta with oxytocin/vasopressin varies among subdivisions, the effects of estrogen treatment on gene expression requires further study to ascertain the role of estrogen action in this neuronal systems.


Assuntos
Regulação da Expressão Gênica/fisiologia , Ocitocina/genética , Receptores de Estrogênio/fisiologia , Núcleo Supraóptico/fisiologia , Animais , Receptor beta de Estrogênio , Camundongos , RNA Mensageiro/genética , Ratos , Vasopressinas/genética
5.
Ann N Y Acad Sci ; 1007: 89-100, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14993043

RESUMO

Estrogen has been demonstrated to protect against brain injury, neurodegeneration, and cognitive decline. Furthermore, estrogen seems to specifically protect cortical and hippocampal neurons from ischemic injury. Here our data evaluating the neuroprotective effects of estrogens, the selective estrogen receptor modulators (SERMs), and estrogen receptor alpha- and beta-selective ligands in animal models of ischemic injury are discussed. In rats and mice, the middle cerebral artery occlusion (MCAO) model was used as models representing cerebrovascular stroke, while in gerbils the two-vessel occlusion model, resenting acute heart attack, was used. Using focal ischemia in ovariectomized ERalphaKO, ERbetaKO, and wild-type mice, we clearly established that the ERalpha subtype is the critical ER-mediating neuroprotection in mouse focal ischemia. Because of the characteristic blood supply of the gerbil, the gerbil global ischemia model was used to evaluate the neuroprotective effects of estrogen, SERMs, and ERalpha- and ERbeta-selective compounds in the hippocampus. Analysis of neurogranin mRNA, a marker of viability of hippocampal neurons, with in situ hybridization, revealed that estrogen treatment resulted in a complete protection in the CA1 regions not only when administered before, but also when given 1 hour after occlusion. Our in vivo binding studies with (125)I-estrogen in gerbils revealed the presence of nuclear estrogen binding sites primarily in CA1 neurons, but not in the CA3 region, as we saw in rats and mice. Together, these observations demonstrate that estrogen protects from ischemic injury in both the focal and global ischemia models by acting primarily via classical nuclear receptors.


Assuntos
Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Estrogênios/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Relação Dose-Resposta a Droga , Estrogênios/metabolismo , Humanos , Fármacos Neuroprotetores/metabolismo
6.
Brain Res Dev Brain Res ; 140(2): 157-67, 2003 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-12586422

RESUMO

Kallmann syndrome is hypogonadotropic hypogonadism coupled with anosmia. A morphological study found that the endocrine disorder in X-linked Kallmann syndrome is due to failed migration of gonadotropin releasing-hormone (GnRH) neurons from the olfactory placode to the brain during development. Anosmia results from agenesis of the olfactory bulbs and tracts. The gene responsible for the X-linked form of Kallmann syndrome, KAL-1, has been characterized. The orthologues of KAL-1 have been isolated in the chick and the zebrafish, but still await identification in rodents. In the present study, we used polyclonal and monoclonal antibodies to the human KAL-1 encoded protein, anosmin-1, in a primitive mammal, the Asian musk shrew. Musk shrews are insectivores and are therefore evolutionarily closer to primates than rodents. By immunoblot analysis of musk shrew tissues, a band of the expected apparent molecular mass (95 kDa) was detected in several structures of the central nervous system, but not in liver or muscle, which is consistent with the gene expression pattern previously reported in the chick. By immunohistochemical analysis, anosmin-1 was detected in the developing olfactory epithelium, the olfactory, vomeronasal and terminalis nerves, the olfactory bulbs, the cerebellum and the cerebral cortex and in several other regions of the brain, during musk shrew embryogenesis. Furthermore, migrating gonadotropin releasing-hormone (GnRH)-immunoreactive neurons were seen in close association with anosmin-1-immunoreactive fibers. Assuming that the protein is present at the surface of these fibers, we suggest a possible direct role of anosmin-1 in the migration of GnRH neurons in this species.


Assuntos
Proteínas da Matriz Extracelular , Proteínas do Tecido Nervoso/metabolismo , Musaranhos/embriologia , Animais , Encéfalo/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário e Fetal , Feminino , Immunoblotting , Imuno-Histoquímica , Masculino , Bulbo Olfatório/embriologia , Mucosa Olfatória/embriologia , Condutos Olfatórios/embriologia
7.
Neuropharmacology ; 79: 307-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24326295

RESUMO

Neurofibrillary tangles (NFT), mainly consisting of fibrillar aggregates of hyperphosphorylated tau, are a defining pathological feature of Alzheimer's Disease and other tauopathies. Progressive accumulation of tau into NFT is considered to be a toxic cellular event causing neurodegeneration. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification and O-GlcNAcylation of tau has been suggested to regulate tau phosphorylation. We tested if an increase in tau O-GlcNAcylation affected tau phosphorylation and aggregation in the rTg4510 tau transgenic mouse model. Acute treatment of rTg4510 mice with an O-GlcNAcase inhibitor transiently reduced tau phosphorylation at epitopes implicated in tau pathology. More importantly, long-term inhibitor treatment strongly increased tau O-GlcNAcylation, reduced the number of dystrophic neurons, and protected against the formation of pathological tau species without altering the phosphorylation of non-pathological tau. This indicates that O-GlcNAcylation prevents the aggregation of tau in a manner that does not affect its normal phosphorylation state. Collectively, our results support O-GlcNAcase inhibition as a potential therapeutic strategy for the treatment of Alzheimer's Disease and other tauopathies.


Assuntos
Acetilglucosamina/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piranos/farmacologia , Tauopatias/tratamento farmacológico , Tiazóis/farmacologia , Proteínas tau/metabolismo , Acetilglucosamina/antagonistas & inibidores , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Modelos Animais de Doenças , Feminino , Glicosilação , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA