Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hippocampus ; 33(10): 1075-1093, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421207

RESUMO

We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule ß-arrestin-2 (ß-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the ß-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the ß-Arr2 KO mice, indicating that this marker can be increased even though AHN is not. We discovered two other conditions where a complex relationship occurs between the number of DCX-expressing cells compared to levels of AHN: a chronic antidepressant model where DCX is upregulated and an inflammation model where DCX is downregulated. We concluded that assessing the number of DCX-expressing cells alone to quantify levels of AHN can be complex and that caution should be applied when label retention techniques are unavailable.


Assuntos
Proteína Duplacortina , Fluoxetina , Animais , Camundongos , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios
2.
Toxicol Appl Pharmacol ; 322: 41-50, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219650

RESUMO

Dendritic cells (DC) are known to play a major role during contact allergy induced by contact sensitizers (CS). Our previous studies showed that Nrf2 was induced in DC and controlled allergic skin inflammation in mice in response to chemicals. In this work, we raised the question of the role of Nrf2 in response to a stress provoked by chemical sensitizers in DC. We used two well-described chemical sensitizers, dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA), known to have different chemical reactivity and mechanism of action. First, we performed a RT-qPCR array showing that CinA was a higher inducer of immune and detoxification genes compared to DNCB. Interestingly, in the absence of Nrf2, gene expression was dramatically affected in response to DNCB but was slightly affected in response to CinA. These observations prompted us to study DC's cell death in response to both chemicals. DNCB and CinA increased apoptotic cells and decreased living cells in the absence of Nrf2. The characterization of DC apoptosis induced by both CS involved the mitochondrial-dependent caspase pathway and was regulated via Nrf2 in response to both chemicals. Oxidative stress induced by DNCB, and leading to cell death, was regulated by Nrf2. Unlike CinA, DNCB treatment provoked a significant reduction of intracellular GSH levels and up-regulated bcl-2 gene expression, under the control of Nrf2. This work underlies that chemical reactivity may control Nrf2-dependent gene expression leading to different cytoprotective mechanisms in DC.


Assuntos
Acroleína/análogos & derivados , Células Dendríticas/metabolismo , Dinitroclorobenzeno/toxicidade , Glutationa/metabolismo , Haptenos/toxicidade , Fator 2 Relacionado a NF-E2/fisiologia , Acroleína/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Dendríticas/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência
3.
Biomacromolecules ; 18(8): 2379-2388, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28639789

RESUMO

Inflammation is an essential component of many lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), or acute lung injury. Our purpose was to design efficient carriers for lung delivery of small interfering RNA (siRNA) targeting tumor necrosis factor (TNF-α) in an acute lung injury model. To achieve this goal, two different types of phosphorus-based dendrimers with either pyrrolidinium or morpholinium as terminal protonated amino groups were selected for their better biocompatibility compared to other dendrimers. Dendriplexes containing pyrrolidinium surface groups demonstrated a stronger siRNA complexation, a higher cellular uptake, and enhanced in vitro silencing efficiency of TNF-α in the lipopolysaccharide (LPS)-activated mouse macrophage cell line RAW264.7, compared to morpholinium-containing dendriplexes. The better performance of the pyrrolidium dendriplexes was attributed to their higher pKa value leading to a stronger siRNA complexation and improved protection against enzymatic degradation resulting in a higher cellular uptake. The superior silencing effect of the pyrrolidinium dendriplexes, compared to noncomplexed siRNA, was confirmed in vivo in an LPS-induced murine model of short-term acute lung injury upon lung delivery via nasal administration. These data suggest that phosphorus dendriplexes have a strong potential in lung delivery of siRNA for treating inflammatory lung diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios , Dendrímeros , Inativação Gênica , Morfolinos , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Administração Intranasal , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Morfolinos/química , Morfolinos/genética , Morfolinos/farmacologia , Células RAW 264.7 , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Fator de Necrose Tumoral alfa/genética
4.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25369805

RESUMO

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Assuntos
Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Proteínas Ativadoras de GTPase/biossíntese , Genes ras/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais/fisiologia
5.
Curr Genet ; 62(4): 897-910, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27038308

RESUMO

Transcriptome profiling is a powerful tool for identifying gene networks from whole genome expression analysis in many living species. Here is described the first extensively characterized platform using Agilent microarray technology for transcriptome analysis in the filamentous fungus Aspergillus (Emericella) nidulans. We developed and validated a reliable gene expression microarray in 8 × 15 K format, with predictive and experimental data establishing its specificity and sensitivity. Either one or two 60-mer oligonucleotide probes were selected for each of 10,550 nuclear as well as 20 mitochondrial coding sequences. More than 99 % of probes were predicted to hybridize with 100 % identity to their aimed specific A. nidulans target only. Probe sensitivity was supported by a highly narrow distribution of melting temperatures together with thermodynamic features, which strongly favored probe-target perfect match hybridization, in comparison with predicted secondary structures. Array quality was evaluated through transcriptome comparison of two A. nidulans strains, differing by the presence or not of Escherichia coli LacZ transgene. High signal-to-noise ratios were measured, and signal reproducibility was established at intra-probe and inter-probe levels. Reproducibility of microarray performances was assessed by high correlation between two-color dye signals and between technical replicates. Results were confirmed by RT-qPCR analysis on five genes. Though it covers 100 % of the A. nidulans targeted coding sequences, this low density array allows limited experimental costs and simplified data analysis process, making it suitable for studying gene expression in this model organism through large numbers of experimental conditions, in basic, biomedical or industrial microbiology research fields.


Assuntos
Aspergillus nidulans/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Biologia Computacional/métodos , Perfilação da Expressão Gênica/normas , Genômica/métodos , Genômica/normas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
6.
Am J Physiol Endocrinol Metab ; 306(6): E668-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24425764

RESUMO

The oligopeptide transporter peptide cotransporter-1 Slc15a1 (PEPT1) plays a major role in the regulation of nitrogen supply, since it is responsible for 70% of the dietary nitrogen absorption. Previous studies demonstrated that PEPT1 expression and function in jejunum are reduced in diabetes and obesity, suggesting a nitrogen malabsorption from the diet. Surprisingly, we reported here a decrease in gut nitrogen excretion in high-fat diet (HFD)-fed mice and further investigated the mechanisms that could explain this apparent contradiction. Upon HFD, mice exhibited an increased concentration of free amino acids (AAs) in the portal vein (60%) along with a selective increase in the expression of two AA transporters (Slc6a20a, Slc36a1), pointing to a specific and adaptive absorption of some AAs. A delayed transit time (+40%) and an increased intestinal permeability (+80%) also contribute to the increase in nitrogen absorption. Besides, HFD mice exhibited a 2.2-fold decrease in fecal DNA resulting from a reduction in nitrogen catabolism from cell desquamation and/or in the intestinal microbiota. Indeed, major quantitative (2.5-fold reduction) and qualitative alterations of intestinal microbiota were observed in feces of HFD mice. Collectively, our results strongly suggest that both increased AA transporters, intestinal permeability and transit time, and changes in gut microbiota are involved in the increased circulating AA levels. Modifications in nitrogen homeostasis provide a new insight in HFD-induced obesity and glucose intolerance; however, whether these modifications are beneficial or detrimental for the HFD-associated metabolic complications remains an open issue.


Assuntos
Sistemas de Transporte de Aminoácidos/biossíntese , Aminoácidos/metabolismo , Modelos Animais de Doenças , Intolerância à Glucose/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Obesidade/metabolismo , Simportadores/biossíntese , Alostase , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/sangue , Animais , DNA/análise , Dieta Hiperlipídica/efeitos adversos , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Fezes/química , Fezes/microbiologia , Regulação da Expressão Gênica , Intolerância à Glucose/etiologia , Intolerância à Glucose/microbiologia , Intolerância à Glucose/patologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrogênio/análise , Nitrogênio/metabolismo , Obesidade/etiologia , Obesidade/microbiologia , Obesidade/patologia , Transportador 1 de Peptídeos , Simportadores/genética , Simportadores/metabolismo
7.
Angiogenesis ; 16(3): 575-93, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23386104

RESUMO

Osteoprotegerin (OPG), a soluble tumour necrosis factor receptor superfamily member, inhibits RANKL-mediated osteoclastogenesis. We have previously reported that OPG enhances the proangiogenic properties of endothelial colony-forming cells (ECFCs) in vitro, and promotes vasculogenesis in vivo. Here we investigated how OPG promotes neovascularisation. Proteomic experiments showed that OPG pretreatment affected ECFCs protein expression in two ways, 23 spots being down-regulated and 6 upregulated. These spots corresponded to proteins involved in cell motility, adhesion, signal transduction and apoptosis. In keeping with these proteomic results, we found that OPG induced ECFCs adhesion to activated endothelium in shear stress conditions, promoting intermediate but not focal adhesion to fibronectin and collagen. Treatment with OPG induced a reorganization of the ECFCs cytoskeleton, with the emergence of cell protrusions characteristic of a migratory phenotype. These effects correlated with decreased FAK phosphorylation and enhanced integrin αVß3 expression. OPG drastically reduced caspase-3/7 activities and maintained ECFCs viability after 48 h of treatment. All these effects were significantly attenuated by ECFCs incubation with the CXCR4 antagonist AMD-3100, and by prior heparan sulphate proteoglycan disruption. The proangiogenic properties of OPG appeared to be mediated by the proteoglycan syndecan-1, although OPG 1-194 lacking its heparin-binding domain still had pro-vasculogenic effects in vitro and in vivo. These results suggest that OPG may interact with ECFCs by binding to HSPGs/syndecan-1, thereby induce an anti-adhesive effect and promoting ECFCs migration through a SDF-1/CXCR4 dependent pathway.


Assuntos
Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteoprotegerina/farmacologia , Benzilaminas , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclamos , Citoesqueleto/efeitos dos fármacos , Células Endoteliais/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica/fisiologia , Compostos Heterocíclicos , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfaVbeta3/metabolismo , Neovascularização Fisiológica/fisiologia , Osteoprotegerina/metabolismo , Fosforilação/efeitos dos fármacos , Proteômica , Sindecana-1/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38062286

RESUMO

While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.

9.
PLoS One ; 18(9): e0292015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733758

RESUMO

The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.


Assuntos
Proteínas Quinases Ativadas por AMP , Insuficiência Cardíaca , Camundongos , Ratos , Animais , Cálcio , Miócitos Cardíacos , Adrenérgicos , Cálcio da Dieta
10.
Antioxidants (Basel) ; 11(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326225

RESUMO

Keratinocytes (KC) play a crucial role in epidermal barrier function, notably through their metabolic activity and the detection of danger signals. Chemical sensitizers are known to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), leading to cellular detoxification and suppressed proinflammatory cytokines such as IL-1ß, a key cytokine in skin allergy. We investigated the role of Nrf2 in the control of the proinflammatory response in human KC following treatment with Cinnamaldehyde (CinA), a well-known skin sensitizer. We used the well-described human KC cell line KERTr exposed to CinA. Our results showed that 250 µM of CinA did not induce any Nrf2 accumulation but increased the expression of proinflammatory cytokines. In contrast, 100 µM of CinA induced a rapid accumulation of Nrf2, inhibited IL-1ß transcription, and downregulated the zymosan-induced proinflammatory response. Moreover, Nrf2 knockdown KERTr cells (KERTr ko) showed an increase in proinflammatory cytokines. Since the inhibition of Nrf2 has been shown to alter cellular metabolism, we performed metabolomic and seahorse analyses. The results showed a decrease in mitochondrial metabolism following KERTr ko exposure to CinA 100 µM. In conclusion, the fate of Nrf2 controls proinflammatory cytokine production in KCs that could be linked to its capacity to preserve mitochondrial metabolism upon chemical sensitizer exposure.

11.
Biomacromolecules ; 12(11): 4136-43, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21981120

RESUMO

Despite the wide interest raised by lung administration of nanoparticles (NPs) for the treatment of various diseases, little information is available on their effect toward the airway epithelial barrier function. In this study, the potential damage of the pulmonary epithelium upon exposure to poly(lactide-co-glycolide) (PLGA) NPs has been assessed in vitro using a Calu-3-based model of the bronchial epithelial barrier. Positively and negatively charged as well as neutral PLGA NPs were obtained by coating their surface with chitosan (CS), poloxamer (PF68), or poly(vinyl alcohol) (PVA). The role of NP surface chemistry and charge on the epithelial resistance and mucus turnover, using MUC5AC as a marker, was investigated. The interaction with mucin reduced the penetration of CS- and PVA-coated NPs, while the hydrophilic PF68-coated NPs diffused across the mucus barrier leading to a higher intracellular accumulation. Only CS-coated NPs caused a transient but reversible decrease of the trans-epithelial electrical resistance (TEER). None of the NP formulations increased MUC5AC mRNA expression or the protein levels. These in vitro results highlight the safety of PLGA NPs toward the integrity and function of the bronchial airway barrier and demonstrate the crucial role of NP surface properties to achieve a controlled and sustained delivery of drugs via the pulmonary route.


Assuntos
Brônquios/citologia , Células Epiteliais/metabolismo , Ácido Láctico/farmacologia , Muco/metabolismo , Nanopartículas , Ácido Poliglicólico/farmacologia , Linhagem Celular , Impedância Elétrica , Células Epiteliais/fisiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Permeabilidade , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
12.
ACS Appl Bio Mater ; 2(6): 2573-2586, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35030712

RESUMO

Parenteral administration of amphotericin B-deoxycholate (AmB-DOC) or pentavalent antimonials to cure cutaneous leishmaniasis (CL) results in severe adverse reactions, while topically applied antileishmanial drugs are ineffective despite their good tolerance. This work is aimed to investigate whether poly(isobutylcyanoacrylate) nanoparticles coated with chitosan (Cs-NPs) could provide intrinsic antileishmanial activity after topical application. In vitro evaluations revealed that nanoparticles were active against the promastigote, axenic amastigote, and intramacrophage forms of Leishmania major. In vivo evaluations after repetitive topical applications on the skin of mice infected with L. major showed that Cs-NPs combined or not with AmB-DOC allowed partial healing of the lesion characterized by histological analyses. The parasitic load of skin specimens collected from mice was significantly reduced compared with that from nontreated mice, as analyzed by quantitative polymerase chain reaction (q-PCR). Ultrastructure characterizations by electron microscopy of L. major promastigotes after incubation with Cs-NPs showed morphological alterations, including aberrant shape and swelling of mitochondria and parasitic vacuoles.

13.
J Med Microbiol ; 57(Pt 6): 732-738, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18480330

RESUMO

Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. Antibiotics are presumed to disturb the normal intestinal microbiota, leading to depletion of the barrier effect and colonization by pathogenic bacteria. This first step of infection includes adherence to epithelial cells. We investigated the impact of various environmental conditions in vitro on the expression of genes encoding known, or putative, colonization factors: three adhesins, P47 (one of the two S-layer proteins), Cwp66 and Fbp68, and a protease, Cwp84. The conditions studied included hyperosmolarity, iron depletion and exposure to several antibiotics (ampicillin, clindamycin, ofloxacin, moxifloxacin and kanamycin). The analysis was performed on three toxigenic and three non-toxigenic C. difficile isolates using real-time PCR. To complete this work, the impact of ampicillin and clindamycin on the adherence of C. difficile to Caco-2/TC7 cells was analysed. Overall, for the six strains of C. difficile studied, exposure to subinhibitory concentrations (1/2 MIC) of clindamycin and ampicillin led to the increased expression of genes encoding colonization factors. This was correlated with the increased adherence of C. difficile to cultured cells under the same conditions. The levels of gene regulation observed among the six strains studied were highly variable, cwp84 being the most upregulated. In contrast, the expression of these genes was weakly, or not significantly, modified in the presence of ofloxacin, moxifloxacin or kanamycin. These results suggest that, in addition to the disruption of the normal intestinal microbiota and its barrier effect, the high propensity of antibiotics such as ampicillin and clindamycin to induce C. difficile infection could also be explained by their direct role in enhancing colonization by C. difficile.


Assuntos
Antibacterianos/efeitos adversos , Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Diarreia/induzido quimicamente , Regulação Bacteriana da Expressão Gênica/fisiologia , Adesinas Bacterianas/efeitos dos fármacos , Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Diarreia/microbiologia , Resistência a Medicamentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Concentração Osmolar
14.
Pharmacol Biochem Behav ; 90(2): 174-83, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17980409

RESUMO

In vivo intracerebral microdialysis is an important neurochemical technique that has been applied extensively in genetic and pharmacological studies aimed at investigating the relationship between neurotransmitters. Among the main interests of microdialysis application is the infusion of drugs through the microdialysis probe (reverse dialysis) in awake, freely moving animals. As an example of the relevance of intracerebral microdialysis, this review will focus on our recent neurochemical results showing the impact of Brain-Derived Neurotrophic Factor (BDNF) on serotonergic neurotransmission in basal and stimulated conditions. Indeed, although the elevation of 5-HT outflow induced by chronic administration of selective serotonin reuptake inhibitors (SSRIs) causes an increase in BDNF protein levels and expression (mRNA) in the hippocampus of rodents, the reciprocal interaction has not been demonstrated yet. Thus, the neurochemical sight of this question will be addressed here by examining the consequences of either a constitutive decrease or increase in brain BDNF protein levels on hippocampal extracellular levels of 5-HT in conscious mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Hipocampo/metabolismo , Microdiálise/métodos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Citalopram/metabolismo , Camundongos , Paroxetina/farmacologia , RNA Mensageiro/análise , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia
15.
J Control Release ; 271: 98-106, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29277682

RESUMO

In this study, we describe a liposome-based siRNA delivery system with a core composed of siRNA:protamine complex and a shell designed for the active targeting of CD44-expressing cells using for the first time the anti-CD44 aptamer (named Apt1) as targeting ligand. Among all functions, CD44 is the most common cancer stem cell surface biomarker and is found overexpressed in many tumors making this an attractive receptor for therapeutic targeting. This unique non-cationic system was evaluated for the silencing of the reporter gene of luciferase (luc2) in a triple-negative breast cancer model in vitro and in vivo. We show the possibility of conjugating an aptamer to siRNA-containing liposomes for an efficient gene silencing in CD44-expressing tumor cells in vivo, in the perspective of silencing disease-related genes in tumors.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Biomarcadores Tumorais/genética , Receptores de Hialuronatos/genética , RNA Interferente Pequeno/administração & dosagem , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Lipossomos , Luciferases/genética , Camundongos , Nanomedicina , Neoplasias de Mama Triplo Negativas/terapia
16.
Circ Res ; 92(10): 1115-22, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12730091

RESUMO

Little is known regarding the molecular mechanisms of atherogenicity of triglyceride-rich lipoproteins such as very low-density lipoproteins (VLDLs). We examined the effect of VLDL on proliferation of rat aortic smooth muscle cells, intracellular Ca2+ handling, and activity of cAMP-responsive element binding protein (CREB) and nuclear factor of activated T cells (NFAT) transcription factors. VLDL, isolated from human serum, dose- and time-dependently promoted proliferation. After 4 hours of exposure to VLDL (0.15 g/L proteins), the caffeine-induced Ca2+ release was inhibited and the IP3-sensitive Ca2+ release induced by ATP (10 micromol/L) was markedly prolonged. In quiescent cells, CREB was phosphorylated (pCREB) and NFAT was present in the cytosol, whereas in cells exposed to VLDL for 4 to 24 hours, pCREB disappeared and NFAT was translocated to the nucleus. VLDL-induced NFAT translocation and proliferation were blocked by cyclosporin A and LY294002 involving calcineurin and phosphatidylinositol 3-kinase (PI3K) pathways. Indeed, VLDLs rapidly phosphorylate protein kinase B and glycogen synthase kinase-3beta in a PI3K-dependent way. These results provide the first evidence that VLDLs induce smooth muscle cell proliferation by activating the PI3K pathway and nuclear NFAT translocation. Blockade of the Ca2+-induced Ca2+ release mechanism and dephosphorylation of pCREB contribute but were not sufficient to induce a proliferating phenotype.


Assuntos
Cálcio/metabolismo , Lipoproteínas VLDL/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Nucleares , Fosfatidilinositol 3-Quinases/metabolismo , Transcrição Gênica/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Líquido Intracelular/metabolismo , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Fatores de Transcrição NFATC , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
17.
Mol Endocrinol ; 19(5): 1135-46, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15661831

RESUMO

Recently, the role of the peroxisome proliferator-activated receptor alpha (PPARalpha) in the hepatic inflammatory response has been associated to the decrease of acute phase protein transcription, although the molecular mechanisms are still to be elucidated. Here, we were interested in the regulation by Wy-14643 (PPARalpha agonist) of alpha1-acid glycoprotein (AGP), a positive acute phase protein, after stimulation by Dexamethasone (Dex), a major modulator of the inflammatory response. In cultured rat hepatocytes, we demonstrate that PPARalpha inhibits at the transcriptional level the Dex-induced AGP gene expression. PPARalpha exerts this inhibitory effect by antagonizing the CCAAT/enhancer binding protein (C/EBPbeta) transcription factor that is involved in Dex-dependent up-regulation of AGP gene expression. Overexpression of C/EBPbeta alleviates the repressive effect of PPARalpha, thus restoring the Dex-stimulated AGP promoter activity. Furthermore, glutathione-S-transferase GST pull-down and coimmunoprecipitation experiments evidenced, for the first time, a physical interaction between PPARalpha and the C-terminal DNA binding region of C/EBPbeta, thus preventing it from binding to specific sequence elements of the AGP promoter. Altogether, these results provide an additional molecular mechanism of negative regulation of acute phase protein gene expression by sequestration of the C/EBPbeta transcription factor by PPARalpha and reveal the high potency of the latter in controlling inflammation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica/fisiologia , Orosomucoide/genética , PPAR alfa/metabolismo , Animais , Dexametasona/farmacologia , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Coativador 2 de Receptor Nuclear , Orosomucoide/biossíntese , Proliferadores de Peroxissomos/farmacologia , Regiões Promotoras Genéticas , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
Oncotarget ; 7(11): 12102-20, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933814

RESUMO

Hypoxia Inducible Factor (HIF) is the main transcription factor that mediates cell response to hypoxia. Howeverthe complex factor cascades induced by HIF during regenerative angiogenesis are currently incompletely mapped and the biological outcome mediated by chronic HIF induction during vessel regeneration are not well known. Here, we investigated the biological impact of HIF induction on vascular regeneration and identified the differentially regulated genes during regeneration, HIF induction and hypoxic regeneration. The use of the fin zebrafish regeneration model revealed that exposure to HIF inducer (cobalt chloride) prevents vessel differentiation by maintaining their vascular plexuses in an immature state. The regenerated fins are easily breakable, lacking completely endochondral ossification. Gene expression arrays combined to gene functional enrichment analysis revealed that regenerative process and HIF induction shared the regulation of common genes mainly involved in DNA replication and proteasome complex. HIF induction during regeneration affected the expression of exclusive genes involved in cell differentiation and communication, consistent with the observed immature vascular plexuses of the regenerated fins during HIF induction. The use of morpholino (MO) knockdown strategy revealed that the expression of some of these genes such as tubulin and col10a1 are required for fin regeneration. Taken together, this study revealed the impact of HIF induction on regenerative angiogenesis and provided a framework to develop a gene network leading to regenerative process during HIF expression.


Assuntos
Nadadeiras de Animais/irrigação sanguínea , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Regeneração/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Cobalto/farmacologia , Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Fisiológica/fisiologia , Transdução de Sinais , Peixe-Zebra
19.
Int J Pharm ; 514(1): 103-111, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27863652

RESUMO

We have investigated the impact of hyaluronic acid (HA)-coating on the targeting capacity of siRNA lipoplexes to CD44-overexpressing tumor cells. Cellular uptake and localization of HA-lipoplexes were evaluated by flow cytometry and fluorescence microscopy and both methods showed that these lipoplexes were rapidly internalized and localized primarily within the cytoplasm. Inhibition of luciferase expression on the A549-luciferase lung cancer cell line was achieved in vitro using an anti-Luc siRNA. 81% of luciferase gene expression inhibition was obtained in vitro with HA-lipoplexes at +/- ratio 2. In vivo, in a murine A549 metastatic lung cancer model, the treatment with HA-lipoplexes carrying anti-luciferase siRNA led to a statistically significant decrease of luciferase expression as opposed to progressive increase with non-modified lipoplexes or NaCl 0.9%. The reduction of the expression of luciferase mRNA tumor of mice treated with HA-lipoplexes supported the inhibition effect due to siRNA. These results highlight the potential of HA-lipoplexes in CD44-targeting siRNA delivery.


Assuntos
Ácido Hialurônico/química , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Luciferases/metabolismo , Camundongos , RNA Mensageiro/metabolismo
20.
Neurosci Lett ; 521(1): 20-5, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22622174

RESUMO

The serotonergic system has been widely implicated in stress related psychiatric disorders such as depression and anxiety. Generation of receptor knockout mice has offered a new approach to study processes underlying anxiety. For instance, knockout mice for both 5-HT(1A) and 5-HT(1B) receptors (5-HT(1A/1B)(-/-)) display an anxious phenotype, associated with robust physiological and neurochemical changes related to brain serotonin function. As ventral hippocampus is a key region in the mediation and genesis of anxiety, we explored the transcriptome changes induced by the genetic inactivation of these two receptors in 5-HT(1A/1B)(-/-) mice. Dissociation of ventral vs. dorsal hippocampus was confirmed by the over-expression of selective markers in both regions. 723 genes were observed up/down regulated in 5-HT(1A/1B)(-/-) mice. Using Ingenuity, biological networks and signal transduction pathway analysis corresponding to the identified gene revealed putative dysregulation of nervous system development and function, especially genes associated with long-term potentiation and adult neurogenesis (including Bdnf, Camk2a, Camk4, and Klf9). Furthermore, immunohistochemistry experiments studying adult hippocampal neurogenesis in adult 5-HT(1A/1B)(-/-) mice showed a decreased survival, but not proliferation of newborn cells in our model.


Assuntos
Hipocampo/metabolismo , Neurogênese , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT1B de Serotonina/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Perfilação da Expressão Gênica , Hipocampo/citologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1B de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA