Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401506, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046339

RESUMO

Room temperature phosphorescence from organic materials has attracted an increasing attention in the recent years due to their potential application in various advancing technologies, notably in bioimaging and displays. In this context, heavy atoms such as halogen ones revealed useful tools to enhance the spin-orbit coupling (SOC) of molecular organic phosphors. However, the effect of halogen at the supramolecular level remains less understood, especially in the field of molecular crystals where additional factors can impact the phosphorescence emission. Here, we investigate external effect of halogens on the phosphorescence of chiral phthalimides molecular crystals. The results show that changing the nature of the halogen atom onto the phthalimide core leads to an evolution of the photophysical properties of the materials which does not necessarily follow the classical trend imposed by the expected internal heavy atom effect. Beyond this aspect, we showed that the halogen atom has a profound impact on the packing between the chromophores at the supramolecular level which is of paramount importance towards the optical properties (PLQY and lifetimes) of the different phosphors examined.

2.
Chirality ; 35(7): 390-410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36880151

RESUMO

Room temperature phosphorescence (RTP) in purely organic materials is an uncommon phenomenon of emission, which can be characterized by a long persistent luminescence after removal of the excitation source. In the recent years, RTP organic materials have received a considerable attention due to their high application potential in various advancing technologies, ranging from optoelectronic to biomedical applications. In parallel, many progresses have been achieved on the rationalization of this process and led to the emergence of innovative strategies aiming to achieve highest performances both in terms of phosphorescence efficiency and lifetime. While the topic is still on an ascendant development, the generation of circularly polarized phosphorescent (CPP) emission from purely organic molecules is by far much less explored and remains an impressive challenge. Still, the perspective of CPP materials appears as an interesting opportunity to answer several comprehensives issues existing in the field. In this article, we define, in a straightforward way, basic principles and key notions for the generation of RTP and CP luminescence (CPL) guiding the design toward CPP materials. After this brief insight, recent advances in the field of chiral organic RTP materials are discussed with an emphasis on their CP-RTP properties. Based on this development, the conclusion drawn allows establishing the next challenges and future opportunities standing in the field.

3.
Angew Chem Int Ed Engl ; 60(5): 2446-2454, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089921

RESUMO

Long-lived room temperature phosphorescence from organic molecular crystals attracts great attention. Persistent luminescence depends on the electronic properties of the molecular components, mainly π-conjugated donor-acceptor (D-A) chromophores, and their molecular packing. Here, a strategy is developed by designing two isomeric molecular phosphors incorporating and combining a bridge for σ-conjugation between the D and A units and a structure-directing unit for H-bond-directed supramolecular self-assembly. Calculations highlight the critical role played by the two degrees of freedom of the σ-conjugated bridge on the chromophore optical properties. The molecular crystals exhibit RTP quantum yields up to 20 % and lifetimes up to 520 ms. The crystal structures of the efficient phosphorescent materials establish the existence of an unprecedented well-organization of the emitters into 2D rectangular columnar-like supramolecular structure stabilized by intermolecular H-bonding.

4.
Nat Commun ; 12(1): 3485, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108487

RESUMO

When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA