Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 87(4): 820-830, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38449376

RESUMO

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Assuntos
Aorta , Bothrops , Oligopeptídeos , Peptídeos , Serpentes Peçonhentas , Animais , Ratos , Brasil , Aorta/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Bradicinina/farmacologia , Masculino , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/química , Ratos Wistar , Venenos de Serpentes/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/química , Estrutura Molecular
2.
J Nat Prod ; 85(12): 2695-2705, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36508333

RESUMO

In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.


Assuntos
Bothrops , Venenos de Crotalídeos , Neuroblastoma , Fármacos Neuroprotetores , Animais , Humanos , Antioxidantes/farmacologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Peptídeos , Venenos de Serpentes
3.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753356

RESUMO

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Assuntos
Antioxidantes , Água , Animais , Antioxidantes/análise , Anuros/fisiologia , Humanos , Mamíferos , Peptídeos/análise , Pele , Água/análise
4.
J Nat Prod ; 84(6): 1787-1798, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34077221

RESUMO

Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Bothrops , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Antimicrobianos/química , Antiprotozoários/química , Catelicidinas , Células Cultivadas , Leishmania/efeitos dos fármacos , Macrófagos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , América do Sul
5.
Future Microbiol ; 13: 151-163, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29308671

RESUMO

AIM: To test ocellatin peptides (ocellatins-PT2-PT6) for antibacterial and antibiofilm activities and synergy with antibiotics against Pseudomonas aeruginosa. MATERIALS & METHODS: Normal- and checkerboard-broth microdilution methods were used. Biofilm studies included microtiter plate-based assays and microscopic analysis by confocal laser scanning microscopy and atomic force microscopy. RESULTS: Ocellatins were more active against multidrug-resistant isolates of P. aeruginosa than against susceptible strains. Ocellatin-PT3 showed synergy with ciprofloxacin and ceftazidime against multidrug-resistant isolates and was capable of preventing the proliferation of 48-h mature biofilms at concentrations ranging from 4 to 8× the MIC. Treated biofilms had low viability and were slightly more disaggregated. CONCLUSION: Ocellatin-PT3 may be promising as a template for the development of novel antimicrobial peptides against P. aeruginosa. [Formula: see text].


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/crescimento & desenvolvimento , Ceftazidima/farmacologia , Ciprofloxacina/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Peso Molecular , Pseudomonas aeruginosa/fisiologia
6.
APMIS ; 125(12): 1056-1062, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28960560

RESUMO

Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. During infection, eggs are deposited in the bladder causing an intense inflammatory reaction. Angiogenesis is defined as the formation of new blood vessels from preexisting ones and is recognized as a key event in cell proliferation and carcinogenesis and spread of malignant lesions. A growing amount of evidence points to angiogenesis playing a key role in schistosomiasis-associated bladder cancer. Thus, identifying biomarkers of this process plays an important role in the study of cancer. Here, we review recent findings on the role of angiogenesis in bladder cancer and the growth factors that induce and assist in their development, particularly SCC of the bladder associated to urogenital schistosomiasis.


Assuntos
Carcinoma de Células Escamosas/etiologia , Esquistossomose Urinária/complicações , Neoplasias da Bexiga Urinária/etiologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Humanos , Linfangiogênese , Neovascularização Patológica , Schistosoma haematobium/patogenicidade , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA