Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(9): 3972-3984, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574715

RESUMO

Hydrogels as scaffolds in tissue engineering have gained increasing attention in recent years. Natural hydrogels, e.g., collagen or fibrin, are limited by their weak mechanical properties and fast degradation, whereas synthetic hydrogels face issues with biocompatibility and biodegradation. Therefore, combining natural and synthetic polymers to design hydrogels with tunable mechanical stability and cell affinity for biomedical applications is of interest. By using fibrin with its excellent cell compatibility and dextran with controllable mechanical properties, a novel bio-based hydrogel can be formed. Here, we synthesized fibrin and dextran-methacrylate (MA)-based hydrogels with tailorable mechanical properties, controllable degradation, variable pore sizes, and ability to support cell proliferation. The hydrogels are formed through in situ gelation of fibrinogen and dextran-MA with thrombin and dithiothreitol. Swelling and nuclear magnetic resonance diffusometry measurements showed that the water uptake and mesh sizes of fabricated hydrogels decrease with increasing dextran-MA concentrations. Cell viability tests confirm that these hydrogels exhibit no cytotoxic effect.


Assuntos
Fibrina , Hidrogéis , Hidrogéis/farmacologia , Dextranos , Porosidade , Engenharia Tecidual , Alicerces Teciduais
3.
Langmuir ; 34(27): 8031-8041, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29897767

RESUMO

Understanding the diffusion of gold nanorods (AuNRs) and their composites in dispersion is important at fundamental level and in fields as diverse as material science, nanobiotechnology to drug delivery. The translational and rotational diffusion of AuNRs decorated with thermoresponsive poly( N-isopropylacrylamide) brushes having hydrophilic and hydrophobic end groups was investigated in the dilute regime by dynamic light scattering. The same series of functionalized AuNRs were studied in the isotropic concentrated dispersions by high-resolution NMR diffusometry. The dependence of translational and rotational diffusivity upon molecular weight and polymer end group were measured as a function of temperature in the region of the brush phase transition. The effective hydrodynamic radius of AuNR composites proved to be the most sensitive quantity to the temperature-induced phase transition of brushes, allowing the evaluation of the brush thickness in the swollen and collapsed states.

4.
Langmuir ; 33(1): 66-74, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27936777

RESUMO

In the presence of additives such as etidronic acid (1-hydroxyethane-1,1-diphosphonic acid, HEDP), a process of peptizing of Laponite clay gels takes place. The peptizing process at the molecular level was directly revealed by 31P and 1H high-resolution magic-angle sample spinning (HRMAS) NMR spectroscopy. Two NMR spectral components were detected and assigned to free etidronic acid and bound to the Laponite disk edges. Furthermore, with increase of temperature the ratio of bound-to-free etidronic acid increases. This thermal activation process could be explained by the increase in electrical polarization of the hydroxyl group at the edges and by the exfoliation of the tactoids that leads to more access to the additive molecules to the electrical charges of platelet edges. 31P HRNMR spectroscopy on sodium fluorohectorite with an aspect ratio of ∼750 shows a reduction of the bound etidronic acid molecules. Transmission electron microscopy (TEM), field-emission scanning microscopy (FESEM), UV-vis spectrophotometry, dynamic light scattering (DLS), and zeta potential results support the proposed peptizing mechanisms.

5.
Macromol Rapid Commun ; 38(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833862

RESUMO

Quantification of the stimuli-responsive phase transition in polymers is topical and important for the understanding and development of novel stimuli-responsive materials. The temperature-induced phase transition of poly(N-isopropylacrylamide) (PNIPAm) with one thiol end group depends on the confinement-free polymer or polymer brush-on the molecular weight and on the nature of the second end. This paper describes the synthesis of heterotelechelic PNIPAm of different molecular weights with a thiol end group-that specifically binds to gold nanorods and a hydrophilic NIPAm end group by reversible addition-fragmentation chain-transfer polymerization. Proton high-resolution magic angle sample spinning NMR spectra are used as an indicator of the polymer chain conformations. The characteristics of phase transition given by the transition temperature, entropy, and width of transition are obtained by a two-state model. The dependence of thermodynamic parameters on molecular weight is compared for hydrophilic and hydrophobic end functional-free polymers and brushes.


Assuntos
Resinas Acrílicas/química , Nanopartículas/química , Polímeros/química , Termodinâmica , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Transição de Fase , Polimerização , Propriedades de Superfície , Temperatura de Transição
6.
Soft Matter ; 12(29): 6240-52, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27378252

RESUMO

Investigation of the aggregation behavior of biohybrid microgels, which can potentially be used as drug carriers, is an important topic, because aggregation not only causes loss of activity, but also toxicity and immunogenicity. To study this effect we synthesized microgels from elastin-like recombinamers (ELRs) using the miniemulsion technique. The existence of aggregation for such biohybrid microgels at different concentrations and temperatures was studied by different methods which include dynamic light scattering (DLS), (1)H high-resolution magic angle sample spinning (HRMAS) NMR spectroscopy, relaxometry and diffusometry. A hysteresis effect was detected in the process of aggregation by DLS as a function of temperature that strongly depends on ELR microgel concentration. The aggregation process was further quantitatively analyzed by the concentration dependence of the (1)H amino-acid residue chemical shifts and microgel diffusivity measured by NMR methods using the population balance kinetic aggregation model.


Assuntos
Elastina/química , Géis/química , Portadores de Fármacos , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Temperatura
7.
Macromol Rapid Commun ; 37(2): 181-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26509959

RESUMO

The investigation of the coacervation (self-aggregation) behavior of biomicrogels which can potentially be used as drug carriers is an important topic, because self-aggregation can not only cause loss of activity, but also toxicity and immunogenicity. To study this effect microgels from elastin-like recombinamer are synthesized using miniemulsion technique. The existence of coacervation for such microgels, at different concentrations and temperatures, is studied and proved by cryo-field emission scanning clectron microscopy (cryo-FESEM), cryo-transmission electron microscopy (cryo-TEM), and by a novel (1) H high-resolution magic angle sample spinning (HRMAS), nuclear magnetic resonance (NMR) spectroscopy, and relaxometry methods. The findings by (1) H HRMAS NMR spectroscopy and relaxometry show simultaneous processes of volume phase temperature transition and coacervation with different sensitivity for hydrophobic and hydrophilic amino acid side-chains in the microgel. The coacervation process is more evidential by the behavior of glycine α-CH2 , (1) H NMR peak as compared to the proline ß-CH2 .


Assuntos
Materiais Biomiméticos/química , Oligopeptídeos/química , Materiais Biomiméticos/síntese química , Portadores de Fármacos , Elastina/química , Emulsões , Floculação , Géis , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/síntese química , Transição de Fase , Temperatura , Termodinâmica
8.
Biomacromolecules ; 13(12): 4205-12, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23102411

RESUMO

Sustainable alternatives for high-performance and functional materials based on renewable resources are intensely needed as future alternatives for present-day, fossil-based materials. Nanochitin represents an emerging class of highly crystalline bionanoparticles with high intrinsic mechanical properties and the ability for conjugation into functional materials owing to reactive amine and hydroxyl groups. Herein we demonstrate that hydrogels containing surface-deacetylated chitin nanofibrils of micrometer length and average diameters of 9 nm, as imaged by cryogenic transmission electron microscopy, can be wet-spun into macrofibers via extrusion in a coagulation bath, a simple low energy and large-scale processing route. The resulting biofibers display attractive mechanical properties with a large plastic region of about 12% in strain, in which frictional sliding of nanofibrils allows dissipation of fracture energy and enables a high work-of-fracture of near 10 MJ/m3. We further show how to add functionality to these macrofibers by exploiting the amine functions of the surface chitosan groups to host catalytically active noble metal nanoparticles, furnishing biobased, renewable catalytic hybrids. These inorganic/organic macrofibers can be used repeatedly for fast catalytic reductions of model compounds without loss of activity, rendering the concept of hybridized chitin materials interesting as novel bioderived supports for nanoparticle catalysts.


Assuntos
Materiais Biocompatíveis/química , Quitina/química , Hidrogéis/química , Nanopartículas Metálicas/química , Platina/química , Catálise , Quitosana/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
9.
Adv Sci (Weinh) ; 9(36): e2204853, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310110

RESUMO

Soft colloidal macromolecular structures with programmable chemical functionalities, size, and shape are important building blocks for the fabrication of catalyst systems and adaptive biomaterials for tissue engineering. However, the development of the easy upscalable and template-free synthesis methods to obtain such colloids lack in understanding of molecular interactions that occur in the formation mechanisms of polymer colloids. Herein, a computer simulation-driven experimental synthesis approach based on the supramolecular self-assembly followed by polymerization of tailored pyrazole-modified monomers is developed. Simulations for a series of pyrazole-modified monomers with different numbers of pyrazole groups, different length and polarity of spacers between pyrazole groups and the polymerizable group are first performed. Based on simulations, monomers able to undergo π-π stacking and guide the formation of supramolecular bonds between polymer segments are synthesized and these are used in precipitation polymerization to synthesize anisotropic microgels. This study demonstrates that microgel morphologies can be tuned from spherical, raspberry-like to dumbbell-like by the increase of the pyrazole-modified monomer loading, which is concentrated at periphery of growing microgels. Combining experimental and simulation results, this work provides a quantitative and predictive approach for guiding microgel design that can be further extended to a diversity of colloidal systems and soft materials with superior properties.


Assuntos
Microgéis , Microgéis/química , Polimerização , Simulação por Computador , Polímeros/química , Coloides/química
10.
Rom J Morphol Embryol ; 56(2 Suppl): 743-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26429167

RESUMO

The effects of two wonder drugs, simvastatins and fenofibrates on the proximal part of the femoris of a series of ovariectomized and non-ovariectomized Wistar albino rats was estimated qualitatively and semi-quantitatively by the modern method of 1D 1H-NMR T2-distribution. The 72 rats subjected to this study were divided in six groups and were sacrificed at two, four, six and eight weeks after ovariectomy and the proximal part of femoris was harvested. The CPMG (Carr-Purcell-Meiboom-Gill) echoes train curves were measured for the bones fully saturated with water during two months after two months of natural drying. These decays were analyzed by Laplace inversion and an average of normalized T2-distributions was considered for all rat's groups. The 1D averaged T2-distributions present four peaks, which were associated with protons in four major environments, from which the free water protons are used as spy molecules to explore the boundaries of cavities. In the approximation of spherical pores, the averaged T2-distributions were transformed in distributions of pores diameters. These were found in the range from 2 µm up to 2 mm. The relative amplitudes, widths and position of deconvoluted distributions of small, medium and large cavities are used for a qualitatively analysis of the effect of our lipid-lowering drugs. For a semi-quantitatively analysis, we chose the diameter d of proximal part of femoris' trabecular cavities. We show that the positive or negative effects of treatments with simvastatins and fenofibrates are strongly dependent on the duration of treatment. Moreover, the treatment of healthy bone is generally counter-indicated.


Assuntos
Fêmur/efeitos dos fármacos , Ácidos Fíbricos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Animais , Feminino , Fêmur/patologia , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Ovariectomia , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Wistar , Sinvastatina/farmacologia
11.
Nat Commun ; 6: 5967, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601360

RESUMO

Nacre-mimetics hold great promise as mechanical high-performance and functional materials. Here we demonstrate large progress of mechanical and functional properties of self-assembled polymer/nanoclay nacre-mimetics by using synthetic nanoclays with aspect ratios covering three orders in magnitude (25-3,500). We establish comprehensive relationships among structure formation, nanostructuration, deformation mechanisms and mechanical properties as a function of nanoclay aspect ratio, and by tuning the viscoelastic properties of the soft phase via hydration. Highly ordered, large-scale nacre-mimetics are obtained even for low aspect ratio nanoplatelets and show pronounced inelastic deformation with very high toughness, while those formed by ultralarge nanoplatelets exhibit superb stiffness and strength, previously only reachable for highly crosslinked materials. Regarding functionalities, we report formerly impossible glass-like transparency, and excellent gas barrier considerably exceeding earlier nacre-mimetics based on natural nanoclay. Our study enables rational design of future high-performance nacre-mimetic materials and opens avenues for ecofriendly, transparent, self-standing and strong advanced barrier materials.

12.
Membranes (Basel) ; 4(1): 1-19, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24957118

RESUMO

Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA