Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Adv Exp Med Biol ; 1425: 575-589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37581831

RESUMO

Herein we present the modern issue of new health technologies that emerge in Medicine and Therapeutics, with regard to their development, regulatory framework, approval, and post-approval monitoring. The European law and legislation distinguish the various subcategories of health technologies in medicinal products, medical devices, biotechnological products, advanced therapy medicinal products, and nanomedicinal products. Each of these categories presents its own distinctive characteristics, based on principles that regard the development technology and intended therapeutic use, and, as a result, is defined by a unique regulatory framework inside the European legislation environment. New health technologies are a key of twenty-first-century knowledge, science, and economy and a part of society growth and economic development, while at the same time they present significant challenges, mainly through matters that regard their safety, efficacy, and value for the public. In this environment, the concept of complexity of living and artificial systems arises, as part of their nature, but also as a perspective that will give answers regarding their dynamic behavior, evolution, and overall quality.


Assuntos
Tecnologia Biomédica , Nanotecnologia , União Europeia
2.
J Liposome Res ; 33(1): 77-88, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35730463

RESUMO

At the dawn of a new nanotechnological era in the pharmaceutical field, it is very important to examine and understand all the aspects that influence in vivo behaviour of nanoparticles. In this point of view, the interactions between serum proteins and liposomes with incorporated anionic, cationic, and/or PEGylated lipids were investigated to elucidate the role of surface charge and bilayer fluidity in protein corona's formation. 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC), hydrogenated soybean phosphatidylcholine (HSPC), and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes with the presence or absence of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (chloride salt) (DOTAP), and/or 1,2-dipalmitoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DPPE-PEG 5000) lipids were prepared by the thin-film hydration method. The evaluation of their biophysical characteristics was enabled by differential scanning calorimetry and dynamic and electrophoretic light scattering. The physicochemical characteristics of mixed liposomes were compared before and after exposure to foetal bovine serum (FBS) and were correlated to calorimetric data. Our results indicate protein binding to all liposomal formulations. However, it is highlighted the importance of surface charge and fluidisation effect to the extent of protein adsorption. Additionally, considering the extensive use of cationic lipids for innovative delivery platforms, we deem PEGylation a key parameter, because even in a small proportion can reduce protein binding, and thus fast clearance and extreme toxicity without affecting positive charge. This study is a continuation of our previous work about protein-liposome interactions and fraction of stealthiness (Fs) parameter, and hopefully a design road map for drug and gene delivery.


Assuntos
Lipossomos , Fosforilcolina , Lipossomos/química , Ligação Proteica , Soroalbumina Bovina , Técnicas de Transferência de Genes
3.
J Liposome Res ; 33(3): 214-233, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36856671

RESUMO

Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.


Assuntos
Nanopartículas , Vacinas , Lipossomos/química , Vacinas/química , Nanopartículas/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Tamanho da Partícula , Lipídeos/química
4.
J Liposome Res ; 32(1): 83-91, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34839768

RESUMO

The aim of the present study is the development and evaluation of the physicochemical properties of chimeric hydrogenated soya phosphatidylcholine (HSPC) and egg phosphatidylcholine (EggPC) liposomes with incorporated triblock copolymer Poloxamer P407 (P407). The physicochemical assay was held in water HPLC-grade and Foetal Bovine Serum (FBS), in order to determine whether these systems can be used as drug or antigen delivery nanosystems. Dynamic and electrophoretic light scattering (DLS/ELS) techniques were used for the measurement of the hydrodynamic diameter, the polydispersity index, and the ζ-potential of the prepared nanosystems. The incorporation of the P407 resulted in a size reduction of all systems. A decrease in the hydrodynamic diameter and polydispersity index were also found as a result of increasing the storage temperature from 4 °C to 25 °C, attributed to P407. The experiments that were carried out in FBS, showed that the addition of P407 improved systems stealth properties. Concluding, we propose P407 as a promising alternative to PEG in the development of lipid nanoparticles with optimized bio- and shelf-stability.


Assuntos
Lipossomos , Nanopartículas , Materiais Biocompatíveis , Lipossomos/química , Nanopartículas/química , Poloxâmero/química
5.
Drug Dev Ind Pharm ; 48(4): 158-168, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35834369

RESUMO

Thermosensitive liposomes loaded with cisplatin and doxorubicin composed of DPPC, DSPC, and DPPE-PEG5000 with different ratios were prepared by thin film hydration method. The Differential Scanning Calorimetry (DSC) curves showed that the liposomes composed of DPPC-DSPC-DPPE-PEG5000 with phospholipid ratio 95:5:0.05 w/w were a suitable formulation as thermosensitive liposomes with a DSC peak at 42.1 °C. The effect of doxorubicin and cisplatin encapsulated non-thermosensitive and thermosensitive liposomes on cellular proliferation and IC50 in SKBR3 & MDA-MB-231 breast cancer and PC-3 & LNcaP prostate cancer cell lines was investigated. The results showed that doxorubicin loaded into thermosensitive liposomes showed 20-fold decrease in the IC50 at 42 °C while comparing it with the same at 37 °C. Also, the results showed a more than 35-fold and 12-fold decrease in the IC50 of cisplatin thermosensitive liposomes at 42 °C, while compared with free cisplatin and cisplatin thermosensitive liposomes at any temperature. The in vivo results showed that the effect of doxorubicin encapsulated thermosensitive liposomes at hyperthermic conditions during the treatment as the tumor growth inhibition was measured 1.5-fold higher than any of the liposomal formulations of doxorubicin. It was also noticed that the tumor volume reduced to 150 mm3 in doxorubicin thermosensitive liposomes (G8) after 3 weeks during the treatment, but increased to 196 mm3 after 4 weeks. The Kaplan-Meir curve showed the 100% survival of the animals from G8 (thermosensitive liposomes containing doxorubicin plus hyperthermia) after 12 weeks. The flow cytometry data revealed more than 25% apoptotic cells and 6.25% necrotic cells in the tumor cells from the tissues of the G8 group of the animals. The results clearly indicate the superior efficacy of doxorubicin and cisplatin containing thermosensitive liposomes treatment during hyperthermia.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Lipossomos/química , Masculino , Neoplasias/tratamento farmacológico , Fosfolipídeos
6.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458617

RESUMO

Losartan potassium salt (LSR) is a well-known antihypertensive drug with proven beneficial effects on human health. Its formulation with the non-toxic 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD) could improve its pharmacological profile. Thus, its molecular interactions are studied using a combination of Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD). First, its complexation is shown through Differential Scanning Calorimetry as lyophilization provided distinct thermal properties in comparison to the mixture. The complexation is further proved by utilizing the chemical shift changes in the complexation and T1 values. Furthermore, the reversible favorable complexation was shown by MD calculations. Such physical chemical properties provide evidence that this formulation must be further explored through biological experiments.


Assuntos
Anti-Hipertensivos , Losartan , 2-Hidroxipropil-beta-Ciclodextrina/química , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Varredura Diferencial de Calorimetria , Liofilização , Humanos , Derivados da Hipromelose , Losartan/química , Losartan/farmacologia , Solubilidade
7.
Adv Exp Med Biol ; 1339: 317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023119

RESUMO

The fields of medicine and therapeutics have lately turned towards more modern approaches for the therapy of diseases. These approaches have been classified as new health technologies and various issues that regard their development, application in therapy, regulatory framework, approval and post-approval monitoring have emerged. In the European environment, the law and legislation distinguish new health technologies in certain subcategories, namely, medicinal products, medical devices, biotechnological products, advanced therapy medicinal products and nanomedicinal products. Among these strategies, nanomedicine utilizes entities at the nanoscale that exhibit therapeutic effect in various diseases, such as neurodegenerative disorders, through chemical, physical or biological action. Several nanotechnology-based therapies have been authorized until today; however, there is still no marketed nanomedicine for neurodegenerative diseases. Advanced nanotechnological platforms, including the prominent example of stimuli-responsive chimeric/mixed nanocarriers, promise high therapeutic efficacy and safety, through their functional properties and biocompatibility, which come from their composing molecules, self-assembled properties and supramolecular structures. The integration of certain important analytical tools for the study of nanocarriers is also of great importance and may provide knowledge for further development of advanced nanomedicines as well as for their follow-on products, known as "nanosimilars".


Assuntos
Doenças Neurodegenerativas , Humanos , Nanomedicina , Nanotecnologia , Doenças Neurodegenerativas/tratamento farmacológico
8.
Adv Exp Med Biol ; 1339: 385-394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023130

RESUMO

Liposomes and lipidic vehicles are nanotechnological platforms that are present in the clinic and industry, with extensive application and much potential in the field of therapeutics. Currently, the obstacles associated with the pathology and physiology of Alzheimer's disease (AD) and neurodegenerative disorders (NDDs) in general have rendered it impossible to find an effective therapy for these conditions. The only achievement of the available drugs and treatments is that they have succeeded in temporarily alleviating the symptoms and assisting patients in carrying on with their activities of daily living, but they do not delay, let alone halt, the progression of the diseases. So far, numerous small drug molecules and biological molecules have failed in clinical trials. Liposomes represent a promising option for drug delivery that have yet to be tested in clinical trials. They are manufactured by many different and versatile techniques. Their contribution in AD regards mainly the delivery of bioactive agents in a targeted and controlled manner through the blood-brain barrier and into the brain, with the ultimate goal to block the ß-amyloid (Aß) and/or tau aggregation. Their flexibility and biocompatibility as platforms, combined with their ability to protect the encapsulated/incorporated molecules, are advantages that are expected to assist this endeavor.


Assuntos
Doença de Alzheimer , Lipossomos , Atividades Cotidianas , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Humanos
9.
J Liposome Res ; 31(1): 11-18, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31631722

RESUMO

Elastic liposomes consist of phospholipids and of surfactants, could be considered as promising nanotechnological platforms for skin drug delivery. The aim of the present study was the formation of elastic liposomes by thin film hydration method, using different phospholipids and surfactants, in order to determine the effect of the components on their physical characteristics and on their physical stability. Physical properties of elastic liposomes were evaluated using dynamic light scattering (DLS)method. The particle size at the day of their preparation, was ranged between small and large unilamellar vesicles (SUVs and LUVs), dependent on the hydrophilicity of the surfactant used, while their PDI (Poly Dispersity Index) value was close to zero, indicating monodispersed systems. Physical stability study involved the measure of particle size, as a quantifiable physical property, at selected times over a 30-days period, at storage conditions: (i) 4 °C, (ii) 25 °C, iii) 45 °C, suggested that refrigerated conditions promote physical stability, while high temperatures induce aggregation. According to the physical stability study elastic liposomes composed ofTween80 were found to bemore stable than those composed of Span80, at ambient conditions. The goal of our investigation was centred to the development and evaluation of a well know liposomal category i.e. elastic liposomes, by modified their composition with common surfactants (i.e. Span and/or Tween), creating, a new liposomal class namely, elastic lipo-niosomes. To the best of knowledge this the first time that these hybrid vesicles appeared in the literature exhibiting the aforementioned category lipid/surfactants and molar ratios.


Assuntos
Lipídeos/química , Físico-Química , Lipídeos/síntese química , Lipossomos/síntese química , Lipossomos/química , Tamanho da Partícula
10.
J Liposome Res ; 31(3): 279-290, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33590785

RESUMO

The purpose of this study is to prepare stimuli-responsive chimeric liposomes (i.e. hybrid polymer-lipid liposomes) containing functional copolymers and conduct aqueous solution studies in order to determine their properties and potential as drug-delivery nanocarriers. Two random copolymers, composed of the hydrophilic, pH and thermo-responsive 2-(dimethyl amino) ethyl methacrylate (DMAEMA) monomer and the hydrophobic stearyl methacrylate (SMA) monomer, were synthesized via free-radical polymerization and molecularly characterized using SEC, FTIR, and 1H-NMR. The synthesis was followed by aqueous solution studies, utilising dynamic light scattering (DLS) in order to determine their stimuli responsive self-assembly properties. The preparation of chimeric liposomes was mediated by thin film deposition and hydration, followed by aqueous solution studies via DLS, ζ-potential and fluorescence spectroscopy. The drug-loading studies include curcumin loading via a thin film deposition and hydration technique, while aqueous solution properties of the drug-loaded chimeric liposomes were determined utilizing DLS, and UV-Vis spectroscopy.


Assuntos
Lipossomos , Micelas , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Polímeros
11.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200955

RESUMO

Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic molecules that are indicated for severe human diseases. Gliomas are the most frequent type of brain tumor, with glioblastoma being the most common and malignant type. The current state of glioma treatment requires innovative approaches that will lead to efficient and safe therapies. Advanced nanosystems and stimuli-responsive materials are available and well-studied technologies that may contribute to this effort. The present study deals with the development of functional chimeric nanocarriers composed of a phospholipid and a diblock copolymer, for the incorporation, delivery and pH-responsive release of the antiglioma agent TRAM-34 inside glioblastoma cells. Nanocarrier analysis included light scattering, protein incubation and electron microscopy, and fluorescence anisotropy and thermal analysis techniques were also applied. Biological assays were carried out in order to evaluate the nanocarrier nanotoxicity in vitro and in vivo, as well as to evaluate antiglioma activity. The nanosystems were able to successfully manifest functional properties under pH conditions, and their biocompatibility and cellular internalization were also evident. The chimeric nanoplatforms presented herein have shown promise for biomedical applications so far and should be further studied in terms of their ability to deliver TRAM-34 and other therapeutic molecules to glioblastoma cells.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Polímeros/química , Pirazóis/administração & dosagem , Apoptose , Proliferação de Células , Glioma/metabolismo , Glioma/patologia , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Nanopartículas/química , Células Tumorais Cultivadas
12.
Mol Pharm ; 17(11): 4241-4255, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986435

RESUMO

Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que-2-hydroxypropylated-ß-cyclodextrin (Que/HP-ß-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que-methyl-ß-cyclodextrin (Que/Me-ß-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-ß-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-ß-CD more than with Me-ß-CD, possibly revealing the presence of more than one HP-ß-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-ß-CD and Que/HP-ß-CD products was approximately 7-40 times and 14-50 times as high as for pure Que at pH 1.2-6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Encéfalo/efeitos dos fármacos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Mucosa Nasal/efeitos dos fármacos , Quercetina/administração & dosagem , Quercetina/química , beta-Ciclodextrinas/química , Administração Intranasal/métodos , Animais , Disponibilidade Biológica , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Quercetina/farmacocinética , Coelhos , Solubilidade , Temperatura de Transição
13.
J Liposome Res ; 30(3): 209-217, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146618

RESUMO

Liposomes have been on the market as drug delivery systems for over 25 years. Their success comes from the ability to carry toxic drug molecules to the appropriate site of action through passive accumulation, thus reducing their severe side effects. However, the need for enhanced circulation time and site and time-specific drug delivery turned research focus on other systems, such as polymers. In this context, novel composites that combine the flexibility of polymeric nanosystems with the properties of liposomes gained a lot of interest. In the present work a mixed/chimeric liposomal system, composed of phospholipids and block copolymers, was developed and evaluated in regards with its feasibility as a drug delivery system. These innovative nano-platforms combine advantages from both classes of biomaterials. Thermal analysis was performed in order to offers an insight into the interactions between these materials and consequently into their physicochemical characteristics. In addition, colloidal stability was assessed by monitoring z-potential and size distribution over time. Finally, their suitability as carriers for biomedical applications was evaluated by carrying out in vitro toxicity studies.


Assuntos
Lactonas/química , Bicamadas Lipídicas/química , Polímeros/química , Termodinâmica , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Lactonas/farmacologia , Bicamadas Lipídicas/síntese química , Bicamadas Lipídicas/farmacologia , Lipossomos , Estrutura Molecular , Polímeros/síntese química , Polímeros/farmacologia
14.
AAPS PharmSciTech ; 21(2): 65, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31933006

RESUMO

The application of the nanotechnology in medicine and pharmaceutics opens new horizons in therapeutics. Several nanomedicines are in the market and an increasing number is in clinical trials. But which is the advantage of the medicines in nanoscale? The scientists and the regulatory authorities agree that the size and consequently the physiochemical/biological properties of nanomaterials play a key role in their safety and effectiveness. Additionally, all of them agree that a new scientific-based regulatory landscape is required for the establishment of nanomedicines in the market. The aim of this review is to investigate the parameters that the scientists and the regulatory authorities should take into account in order to build up a dynamic regulatory landscape for nanomedicines. For this reason, we propose an "astrolabe-like system" as the guide for establishing the regulatory approval process. Its function is based on the different physicochemical/biological properties in comparison to low molecular weight drugs.


Assuntos
Medicamentos Biossimilares , Nanomedicina/legislação & jurisprudência , Aprovação de Drogas , Controle de Medicamentos e Entorpecentes , Humanos
15.
J Liposome Res ; 29(4): 313-321, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29685077

RESUMO

The aim of the present study is to investigate the interactions between liposomes and proteins and to evaluate the role of liposomal lipid composition and concentration in the formation of protein corona. Liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or hydrogenated soybean phosphatidylcholine (HSPC) with 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] (DPPE-PEG 3000), cholesterol (CH) or mixtures of these lipids, were prepared at different concentrations by the thin-film hydration method. After liposomes were dispersed in HPLC-grade water and foetal bovine serum (FBS), their physicochemical characteristics, such as size, size distribution, and ζ-potential, were determined using dynamic and electrophoretic light scattering. Aggregation of DPPC, HSPC, DPPC:CH (9:1 molar ratio), and HSPC:CH (9:1 molar ratio) in FBS was observed. On the contrary, liposomes incorporating DPPG lipids and CH both in a molar ratio of 11% were found to be stable over time, while their size did not alter dramatically in biological medium. Liposomes containing CH and PEGylated lipids retain their size in the presence of serum as well as their physical stability. In addition, our results indicate that the protein binding depends on the presence of polyethylene glycol (PEG), CH, concentration and surface charge. In this paper, we introduce a new parameter, fraction of stealthiness (Fs), for investigating the extent of protein binding to liposomes. This parameter depends on the changes in size of liposomes after serum incubation, while liposomes have stealth properties when Fs is close to 1. Thus, we conclude that lipid composition and concentration affect the adsorption of proteins and the liposomal stabilization.


Assuntos
Lipossomos/química , Proteínas/química , Colesterol/química , Humanos , Estrutura Molecular , Tamanho da Partícula , Transição de Fase , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Polietilenoglicóis/química , Ligação Proteica , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Temperatura
16.
J Liposome Res ; 28(3): 249-258, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28627268

RESUMO

Liposomes are considered to be one of the most extensively investigated drug delivery nanosystems. Each drug can be loaded either in the liposomal hydrophilic core or within the lipidic bilayer and delivered eventually to the proper site into the organism. There are already many marketed approved liposomal products. The development of a liposomal product is a quite complicated process, while many critical parameters have to be investigated during the preparation process. The present study deals with the drug-to-lipid ratio (D/L ratio), which is a critical process parameter, expresses the actual capacity of the liposome to accommodate the drug and can play a key role at the optimization of every liposomal formulation. D/L ratio is affected by the composition, the different biomaterials and the loading method being used, so the improvement of D/L ratio can optimize the liposomal formulation. D/L ratio can be used as an index of the effectiveness of the preparation method too. Furthermore, D/L ratio influences the therapeutic efficacy of the liposomal product, expressing the actual dose of the drug being administrated. There is a variety of analytical methods, quantifying the drug and the lipids and estimating eventually the D/L ratio. According to the regulatory framework of nanomedicine, about the development of nanosimilars, D/L ratio is a necessary element for the nanosimilar product description and the statement of product comparability.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Lipossomos/química , Preparações Farmacêuticas/química , Química Farmacêutica , Simulação por Computador , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície
17.
AAPS PharmSciTech ; 19(7): 2971-2989, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030723

RESUMO

Chimeric/mixed stimuli-responsive nanocarriers are promising agents for therapeutic and diagnostic applications, as well as in the combinatorial field of theranostics. Herein, we designed chimeric nanosystems, composed of natural phospholipid and pH-sensitive amphiphilic diblock copolymer, in different molar ratios and assessed the polymer lyotropic effect on their properties. Initially, polymer-grafted bilayers were evaluated for their thermotropic behavior by thermal analysis. Chimeric liposomes were prepared through thin-film hydration and the obtained vesicles were studied by light scattering techniques, to measure their physicochemical characteristics and colloidal stability, as well as by imaging techniques, to elucidate their global and membrane morphology. Finally, in vitro screening of the systems' toxicity was held. The copolymer effect on the membrane phase transition strongly depended on the pH of the surrounding environment. Chimeric nanoparticles were around and above 100 nm, while electron microscopy revealed occasional morphology diversity, probably affecting the toxicity of the systems. The latter was assessed to be tolerable, while dependent on the nanosystems' material concentration, polymer concentration, and polymer composition. All experiments suggested that the thermodynamic and biophysical properties of the nanosystems are copolymer-composition- and concentration-dependent, since different amounts of incorporated polymer would produce divergent effects on the lyotropic liquid crystal membrane. Certain chimeric systems can be exploited as advanced drug delivery nanosystems, based on their overall promising profiles.


Assuntos
Portadores de Fármacos/análise , Portadores de Fármacos/química , Desenvolvimento de Medicamentos/métodos , Nanoestruturas/análise , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Lipossomos , Micelas , Polímeros/análise , Polímeros/química
18.
J Liposome Res ; 27(2): 108-117, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27558454

RESUMO

The application of stimuli-responsive medical practices has emerged, in which pH-sensitive liposomes figure prominently. This study investigates the impact of the incorporation of different amounts of pH-sensitive polymer, C12H25-PAA (poly(acrylic acid) with a hydrophobic end group) in l-α-phosphatidylcholine, hydrogenated (Soy) (HSPC) phospholipidic bilayers, with respect to biomimicry and functionality. PAA is a poly(carboxylic acid) molecule, classified as a pH-sensitive polymer, whose pH-sensitivity is attributed to its regulative -COOH groups, which are protonated under acidic pH (pKa ∼4.2). Our concern was to fully characterize, in a biophysical and thermodynamical manner, the mixed nanoassemblies arising from the combination of the two biomaterials. At first, we quantified the physicochemical characteristics and physical stability of the prepared chimeric nanosystems. Then, we studied their thermotropic behavior, through measurement of thermodynamical parameters, using Differential Scanning Calorimetry (DSC). Finally, the loading and release of indomethacin (IND) were evaluated, as well as the physicochemical properties and stability of the nanocarriers incorporating it. As expected, thermodynamical findings are in line with physicochemical results and also explain the loading and release profiles of IND. The novelty of this investigation is the utilization of these pH-sensitive chimeric advanced Drug Delivery nano Systems (aDDnSs) in targeted drug delivery which relies entirely on the biophysics and thermodynamics between such designs and the physiological membranes and environment of living organisms.


Assuntos
Resinas Acrílicas/química , Desenho de Fármacos , Glycine max/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Concentração de Íons de Hidrogênio , Lipossomos/síntese química , Lipossomos/química , Estrutura Molecular
19.
Pharm Dev Technol ; 22(3): 330-335, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26644223

RESUMO

This study is focused on chimeric advanced drug delivery systems and specifically on thermosensitive liposomes, combining lipids and thermoresponsive polymers. In this investigation, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) chimeric liposomal systems were prepared, incorporating the homopolymer C12H25-poly(N-isopropylacrylamide)-COOH (C12H25-PNIPAM-COOH) and the block copolymer poly(n-butylacrylate-b-N-isoropylacrylamide) (PnBA-PNIPAM), at six different molar ratios. Both of these polymers contain the thermoresponsive PNIPAM block, which exhibits lower critical solution temperature (LCST) at 32 °C in aqueous solutions, changing its nature from hydrophilic to hydrophobic above LCST. During the preparation of liposomes, the dispersions were observed visually, while after the preparation we studied the alterations of the physicochemical characteristics, by measuring the size, size distribution and ζ-potential of prepared liposomes. The presence of polymer, either C12H25-PNIPAM-COOH or PnBA-PNIPAM, resulted in liposomes exhibiting different physicochemical characteristics in comparison to conventional DPPC liposomes. At the highest percentage of the polymeric guest, chimeric liposomes were found to retain their size during the stability studies. The incorporation of the appropriate amount of these novel thermoresponsive polymers yields liposomal stabilization and imparts thermoresponsiveness, due to the functional PNIPAM block.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Acrilatos/química , Resinas Acrílicas/química , Lipossomos/química , Polímeros/química , Tecnologia Farmacêutica/métodos , Fenômenos Químicos , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
20.
J Liposome Res ; 26(3): 211-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26364717

RESUMO

This study is focused on chimeric advanced drug delivery nanosystems and specifically on pH-sensitive liposomes, combining lipids and pH-responsive amphiphilic block copolymers. Chimeric liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different forms of block copolymers, i.e. poly(n-butylacrylate)-b-poly(acrylic acid) (PnBA-b-PAA) at 70 and 85% content of PAA at six different molar ratios, each form respectively. PAA block exhibits pH-responsiveness, because of the regulative group of -COOH. -COOH is protonated under acidic pH (pKa ca. 4.2), while remains ionized under basic or neutral pH, leading to liposomes repulse and eventually stability. Lipid bilayers were prepared composed of DPPC and PnBA-b-PAA. Experiments were carried out using differential scanning calorimetry (DSC) in order to investigate their thermotropic properties. DSC indicated disappearance of pre-transition at all chimeric lipid bilayers and slight thermotropic changes of the main transition temperature. Chimeric liposomes have been prepared and their physicochemical characteristics have been explored by measuring the size, size distribution and ζ-potential, owned to the presence of pH-responsive polymer. At percentages containing medium to high amounts of the polymer, chimeric liposomes were found to retain their size during the stability studies. These results were well correlated with those indicated in the DSC measurements of lipid bilayers incorporating polymers in order to explain their physicochemical behavior. The incorporation of the appropriate amount of these novel pH-responsive block copolymers affects thus the cooperativity, the liposomal stabilization and imparts pH-responsiveness.


Assuntos
Calorimetria , Desenho de Fármacos , Bicamadas Lipídicas/química , Lipossomos/química , Polímeros/química , Concentração de Íons de Hidrogênio , Lipossomos/síntese química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA