Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 156(6): 1153-1166, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630719

RESUMO

A plastic nervous system requires the ability not only to acquire and store but also to forget. Here, we report that musashi (msi-1) is necessary for time-dependent memory loss in C. elegans. Tissue-specific rescue demonstrates that MSI-1 function is necessary in the AVA interneuron. Using RNA-binding protein immunoprecipitation (IP), we found that MSI-1 binds to mRNAs of three subunits of the Arp2/3 actin branching regulator complex in vivo and downregulates ARX-1, ARX-2, and ARX-3 translation upon associative learning. The role of msi-1 in forgetting is also reflected by the persistence of learning-induced GLR-1 synaptic size increase in msi-1 mutants. We demonstrate that memory length is regulated cooperatively through the activation of adducin (add-1) and by the inhibitory effect of msi-1. Thus, a GLR-1/MSI-1/Arp2/3 pathway induces forgetting and represents a novel mechanism of memory decay by linking translational control to the structure of the actin cytoskeleton in neurons.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interneurônios/metabolismo , Memória , Proteínas do Tecido Nervoso/metabolismo , RNA de Helmintos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Sinapses
2.
Proc Natl Acad Sci U S A ; 114(34): 9176-9181, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28790188

RESUMO

Emotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock-context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkmζ, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Norepinefrina/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Metilação de DNA/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Proteínas da Matriz Extracelular/genética , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Memória de Longo Prazo/fisiologia , Muscimol/farmacologia , Proteínas do Tecido Nervoso/genética , Norepinefrina/administração & dosagem , Ratos Sprague-Dawley , Proteína Reelina , Serina Endopeptidases/genética , Transcriptoma/efeitos dos fármacos
3.
J Neurosci ; 37(28): 6661-6672, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592692

RESUMO

The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets.SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica/fisiologia , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/genética , Proteoma/metabolismo , Animais , Aprendizagem por Associação/fisiologia , Proteínas de Caenorhabditis elegans/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genoma/genética , Proteoma/genética
4.
Cytogenet Genome Res ; 152(1): 9-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700985

RESUMO

It has been known for many years that boys with unilateral or bilateral undescended testis (cryptorchidism) tend to have a low IQ, and those who belong to the high infertility risk (HIR) group perform less well at school than low infertility risk (LIR) patients. However, the molecular biological processes underlying this phenomenon are not understood. In this study, we report the outcome of testicular RNA profiling for genes involved in long-term memory formation. We analyzed the histology and the transcriptome of testicular biopsies from bilateral HIR cryptorchid boys, comparing those who received GnRHa treatment for 6 months after the first surgery with those who did not receive GnRHa before the second surgery. We found that GnRHa treatment alters the testicular mRNA levels of neuronal genes that are involved in long-term memory and testosterone synthesis. These data highlight a possible molecular link between cryptorchidism, impaired mini-puberty, and diminished cognitive functions. Our results are consistent with the hypothesis that hypogonadotropic hypogonadism in cryptorchid boys with altered mini-puberty may affect neuronal genes important for memory and learning, which could help explaining the negative correlation between cryptorchidism and intellectual abilities.


Assuntos
Criptorquidismo/tratamento farmacológico , Criptorquidismo/genética , Hormônio Liberador de Gonadotropina/análogos & derivados , Memória de Longo Prazo/efeitos dos fármacos , Testículo/metabolismo , Pré-Escolar , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Lactente , Infertilidade Masculina/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Testículo/efeitos dos fármacos
5.
EMBO J ; 31(6): 1453-66, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22307086

RESUMO

Identifying molecular mechanisms that underlie learning and memory is one of the major challenges in neuroscience. Taken the advantages of the nematode Caenorhabditis elegans, we investigated α-adducin (add-1) in aversive olfactory associative learning and memory. Loss of add-1 function selectively impaired short- and long-term memory without causing acquisition, sensory, or motor deficits. We showed that α-adducin is required for consolidation of synaptic plasticity, for sustained synaptic increase of AMPA-type glutamate receptor (GLR-1) content and altered GLR-1 turnover dynamics. ADD-1, in a splice-form- and tissue-specific manner, controlled the storage of memories presumably through actin-capping activity. In support of the C. elegans results, genetic variability of the human ADD1 gene was significantly associated with episodic memory performance in healthy young subjects. Finally, human ADD1 expression in nematodes restored loss of C. elegans add-1 gene function. Taken together, our findings support a role for α-adducin in memory from nematodes to humans. Studying the molecular and genetic underpinnings of memory across distinct species may be helpful in the development of novel strategies to treat memory-related diseases.


Assuntos
Memória/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Actinas/metabolismo , Adulto , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Feminino , Variação Genética , Humanos , Aprendizagem/fisiologia , Masculino , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 110(46): E4369-74, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24145423

RESUMO

In the last decade there has been an exponential increase in knowledge about the genetic basis of complex human traits, including neuropsychiatric disorders. It is not clear, however, to what extent this knowledge can be used as a starting point for drug identification, one of the central hopes of the human genome project. The aim of the present study was to identify memory-modulating compounds through the use of human genetic information. We performed a multinational collaborative study, which included assessment of aversive memory--a trait central to posttraumatic stress disorder--and a gene-set analysis in healthy individuals. We identified 20 potential drug target genes in two genomewide-corrected gene sets: the neuroactive ligand-receptor interaction and the long-term depression gene set. In a subsequent double-blind, placebo-controlled study in healthy volunteers, we aimed at providing a proof of concept for the genome-guided identification of memory modulating compounds. Pharmacological intervention at the neuroactive ligand-receptor interaction gene set led to significant reduction of aversive memory. The findings demonstrate that genome information, along with appropriate data mining methodology, can be used as a starting point for the identification of memory-modulating compounds.


Assuntos
Descoberta de Drogas/métodos , Genoma Humano/genética , Memória/efeitos dos fármacos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/genética , Sobreviventes/psicologia , Adulto , Estudos Cross-Over , Mineração de Dados/métodos , Difenidramina/farmacologia , Feminino , Fluorometria , Genótipo , Humanos , Entrevistas como Assunto , Modelos Logísticos , Masculino , Memória/fisiologia , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Suíça , Adulto Jovem
7.
J Neurosci ; 34(31): 10274-84, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080589

RESUMO

Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to regulate emotional memory processes, particularly in men, epigenetic modifications of NR3C1 might affect the strength of traumatic memories. Here, we found that increased DNA methylation at the NGFI-A (nerve growth factor-induced protein A) binding site of the NR3C1 promoter was associated with less intrusive memory of the traumatic event and reduced PTSD risk in male, but not female survivors of the Rwandan genocide. NR3C1 methylation was not significantly related to hyperarousal or avoidance symptoms. We further investigated the relationship between NR3C1 methylation and memory functions in a neuroimaging study in healthy subjects. Increased NR3C1 methylation-which was associated with lower NR3C1 expression-was related to reduced picture recognition in male, but not female subjects. Furthermore, we found methylation-dependent differences in recognition memory-related brain activity in men. Together, these findings indicate that an epigenetic modification of the glucocorticoid receptor gene promoter is linked to interindividual and gender-specific differences in memory functions and PTSD risk.


Assuntos
Epigênese Genética/genética , Genocídio/psicologia , Memória , Receptores de Glucocorticoides/genética , Transtornos de Estresse Pós-Traumáticos , Sobreviventes/psicologia , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Metilação de DNA , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Regiões Promotoras Genéticas/genética , Escalas de Graduação Psiquiátrica , Risco , Ruanda , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Suíça , Adulto Jovem
8.
Kidney Int ; 88(6): 1261-1273, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26422507

RESUMO

The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 h, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared with those of wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared with those of vehicle control. In the light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis, and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target.

9.
Mol Genet Genomics ; 290(5): 2031-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25957495

RESUMO

Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.


Assuntos
Cromatina/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica , Diploide , Perfilação da Expressão Gênica , Genes Fúngicos , Meiose , Proteólise , RNA Fúngico/genética , Recombinação Genética , Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 109(22): 8746-51, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586106

RESUMO

Strong memory of a traumatic event is thought to contribute to the development and symptoms of posttraumatic stress disorder (PTSD). Therefore, a genetic predisposition to build strong memories could lead to increased risk for PTSD after a traumatic event. Here we show that genetic variability of the gene encoding PKCα (PRKCA) was associated with memory capacity--including aversive memory--in nontraumatized subjects of European descent. This finding was replicated in an independent sample of nontraumatized subjects, who additionally underwent functional magnetic resonance imaging (fMRI). fMRI analysis revealed PRKCA genotype-dependent brain activation differences during successful encoding of aversive information. Further, the identified genetic variant was also related to traumatic memory and to the risk for PTSD in heavily traumatized survivors of the Rwandan genocide. Our results indicate a role for PKCα in memory and suggest a genetic link between memory and the risk for PTSD.


Assuntos
Memória/fisiologia , Polimorfismo de Nucleotídeo Único , Proteína Quinase C-alfa/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adolescente , Adulto , Idoso , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Genótipo , Homicídio/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Fatores de Risco , Ruanda/etnologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Sobreviventes/psicologia , Uganda , Adulto Jovem
11.
Development ; 138(10): 1913-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21471156

RESUMO

The essential roles of SHH in anteroposterior (AP) and AER-FGF signalling in proximodistal (PD) limb bud development are well understood. In addition, these morphoregulatory signals are key components of the self-regulatory SHH/GREM1/AER-FGF feedback signalling system that regulates distal progression of limb bud development. This study uncovers an additional signalling module required for coordinated progression of limb bud axis development. Transcriptome analysis using Shh-deficient mouse limb buds revealed that the expression of proximal genes was distally extended from early stages onwards, which pointed to a more prominent involvement of SHH in PD limb axis development. In particular, retinoic acid (RA) target genes were upregulated proximally, while the expression of the RA-inactivating Cyp26b1 enzyme was downregulated distally, pointing to increased RA activity in Shh-deficient mouse limb buds. Further genetic and molecular analysis established that Cyp26b1 expression is regulated by AER-FGF signalling. During initiation of limb bud outgrowth, the activation of Cyp26b1 expression creates a distal 'RA-free' domain, as indicated by complementary downregulation of a transcriptional sensor of RA activity. Subsequently, Cyp26b1 expression increases as a consequence of SHH-dependent upregulation of AER-FGF signalling. To better understand the underlying signalling interactions, computational simulations of the spatiotemporal expression patterns and interactions were generated. These simulations predicted the existence of an antagonistic AER-FGF/CYP26B1/RA signalling module, which was verified experimentally. In summary, SHH promotes distal progression of limb development by enhancing CYP26B1-mediated RA clearance as part of a signalling network linking the SHH/GREM1/AER-FGF feedback loop to the newly identified AER-FGF/CYP26B1/RA module.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Tretinoína/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Feminino , Fatores de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais
12.
Cancer Cell Int ; 13(1): 78, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23915418

RESUMO

BACKGROUND: Recent evidence suggests a subset of cells within a tumor with "stem-like" characteristics. These cells are able to transplant tumors in immunodeficient hosts. Distinct from non-malignant stem cells, cancer stem cells (CSC) show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumor cells, and resistance to chemotherapy or radiation. They are often characterized by elevated expression of stem cell surface markers, in particular CD133, and sets of differentially expressed stem cell-associated genes. CSC are usually rare in clinical specimens and hardly amenable to functional studies and gene expression profiling. In this study, a panel of heterogenous melanoma cell lines was screened for typical CSC features. METHODS: Nine heterogeneous metastatic melanoma cell lines including D10 and WM115 were studied. Cell lines were phenotyped using flow cytometry and clonogenic assays were performed by limiting dilution analysis on magnetically sorted cells. Spheroidal growth was investigated in pretreated flasks. Gene expression profiles were assessed by using real-time rt-PCR and DNA microarrays. Magnetically sorted tumor cells were subcutaneously injected into the flanks of immunodeficient mice. Comparative immunohistochemistry was performed on xenografts and primary human melanoma sections. RESULTS: D10 cells expressed CD133 with a significantly higher clonogenic capacity as compared to CD133- cells. Na8, D10, and HBL cells formed spheroids on poly-HEMA-coated flasks. D10, Me39, RE, and WM115 cells expressed at least 2 of the 3 regulatory core transcription factors SOX2, NANOG, and OCT4 involved in the maintenance of stemness in mesenchymal stem cells. Gene expression profiling on CD133+ and CD133- D10 cells revealed 68 up- and 47 downregulated genes (+/-1.3 fold). Two genes, MGP and PROM1 (CD133), were outstandingly upregulated. CD133+ D10 cells formed tumors in NSG mice contrary to CD133- cells and CD133 expression was detected in xenografts and primary human melanoma sections using immunohistochemistry. CONCLUSIONS: Established melanoma cell lines exhibit, to variable extents, the typical features of CSCs. The tumorigenic cell line D10, expressing CD133 and growing in spheroids and might qualify as a potential model of melanoma CSCs.

13.
Hum Reprod ; 27(11): 3233-48, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926843

RESUMO

BACKGROUND: Mammalian spermatogenesis is a process that involves a complex expression program in both somatic and germ cells present in the male gonad. A number of studies have attempted to define the transcriptome of male meiosis and gametogenesis in rodents and primates. Few human transcripts, however, have been associated with testicular somatic cells and germ cells at different post-natal developmental stages and little is known about their level of germline-specificity compared with non-testicular tissues. METHODS: We quantified human transcripts using GeneChips and a total of 47 biopsies from prepubertal children diagnosed with undescended testis, infertile adult patients whose spermatogenesis is arrested at consecutive stages and fertile control individuals. These results were integrated with data from enriched normal germ cells, non-testicular expression data, phenotype information, predicted regulatory DNA-binding motifs and interactome data. RESULTS: Among 3580 genes for which we found differential transcript concentrations in somatic and germ cells present in human testis, 933 were undetectable in 45 embryonic and adult non-testicular tissues, including many that were corroborated at protein level by published gene annotation data and histological high-throughput protein immunodetection assays. Using motif enrichment analyses, we identified regulatory promoter elements likely involved in germline development. Finally, we constructed a regulatory disease network for human fertility by integrating expression signals, interactome information, phenotypes and functional annotation data. CONCLUSIONS: Our results provide broad insight into the post-natal human testicular transcriptome at the level of cell populations and in a global somatic tissular context. Furthermore, they yield clues for genetic causes of male infertility and will facilitate the identification of novel cancer/testis genes as targets for cancer immunotherapies.


Assuntos
Criptorquidismo/metabolismo , Regulação da Expressão Gênica , Infertilidade Masculina/metabolismo , Proteoma/metabolismo , Espermatogênese , Testículo/metabolismo , Adulto , Motivos de Aminoácidos , Animais , Criança , Criptorquidismo/patologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Humanos , Infertilidade Masculina/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Regiões Promotoras Genéticas , Proteoma/química , Proteoma/genética , RNA Mensageiro/metabolismo , Ratos , Especificidade da Espécie , Testículo/crescimento & desenvolvimento , Testículo/patologia
14.
Neurodegener Dis ; 9(1): 38-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21934272

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset degenerative disease characterized by the loss of upper and lower motor neurons leading to progressive muscle atrophy and paralysis. The lack of molecular markers of the progression of disease is detrimental to clinical practice and therapeutic trials. OBJECTIVE: This study was designed to identify gene expression changes in skeletal muscle that could reliably define the degree of disease severity. METHODS: Gene expression profiles were obtained from the deltoid muscles of ALS patients and healthy subjects. Changes in differentially expressed genes were compared to the status of deltoid muscle disability, as determined by manual muscle testing, electrophysiology and the degree of myofiber atrophy. Functionally related genes were grouped by annotation analysis, and deltoid muscle injury was predicted using binary tree classifiers. RESULTS: Two sets of 25 and 70 transcripts appeared differentially regulated exclusively in early and advanced states of deltoid muscle impairment, respectively. The expression of another set of 198 transcripts correlated with a composite score of muscle injury combining manual muscle testing and histological examination. From the totality of these expression changes, 155 transcripts distinguished advanced from early deltoid muscle impairment with 80% sensitivity and 100% specificity. Nine of these transcripts, known also to be regulated in ALS mouse and surgically denervated muscle, predicted the advanced disease status with 100% sensitivity and specificity. CONCLUSION: We provide robust gene expression changes that can be of practical use when monitoring ALS status and the effects of disease-modifying drugs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Músculo Deltoide/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Adolescente , Adulto , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Estudos de Casos e Controles , Músculo Deltoide/patologia , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular
15.
Sci Rep ; 12(1): 2991, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194110

RESUMO

We performed untargeted profiling of circulating microRNAs (miRNAs) in a well characterized cohort of older adults to verify associations of health and disease-related biomarkers with systemic miRNA expression. Differential expression analysis revealed 30 miRNAs that significantly differed between healthy active, healthy sedentary and sedentary cardiovascular risk patients. Increased expression of miRNAs miR-193b-5p, miR-122-5p, miR-885-3p, miR-193a-5p, miR-34a-5p, miR-505-3p, miR-194-5p, miR-27b-3p, miR-885-5p, miR-23b-5b, miR-365a-3p, miR-365b-3p, miR-22-5p was associated with a higher metabolic risk profile, unfavourable macro- and microvascular health, lower physical activity (PA) as well as cardiorespiratory fitness (CRF) levels. Increased expression of miR-342-3p, miR-1-3p, miR-92b-5p, miR-454-3p, miR-190a-5p and miR-375-3p was associated with a lower metabolic risk profile, favourable macro- and microvascular health as well as higher PA and CRF. Of note, the first two principal components explained as much as 20% and 11% of the data variance. miRNAs and their potential target genes appear to mediate disease- and health-related physiological and pathophysiological adaptations that need to be validated and supported by further downstream analysis in future studies.Clinical Trial Registration: ClinicalTrials.gov: NCT02796976 ( https://clinicaltrials.gov/ct2/show/NCT02796976 ).


Assuntos
MicroRNA Circulante/genética , Doença/genética , Perfilação da Expressão Gênica/métodos , Voluntários Saudáveis , Adaptação Fisiológica/genética , Fatores Etários , Aptidão Cardiorrespiratória , MicroRNA Circulante/metabolismo , MicroRNA Circulante/fisiologia , Estudos de Coortes , Exercício Físico/genética , Feminino , Expressão Gênica/genética , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Comportamento Sedentário
16.
Sci Signal ; 14(714): eabj0057, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932374

RESUMO

The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naïve T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeat­containing protein coronin 1, which is dispensable for thymic selection and output, promoted naïve T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase δ (PI3Kδ), thereby suppressing caspase 8­mediated apoptosis. These results therefore reveal a coronin 1­dependent PI3Kδ pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival.


Assuntos
4-Butirolactona , Caspase 8 , Interleucina-7 , Receptores de Antígenos de Linfócitos T , Linfócitos T , 4-Butirolactona/análogos & derivados , Animais , Caspase 8/genética , Caspase 8/metabolismo , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/metabolismo
17.
Reprod Biol Endocrinol ; 8: 154, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21182756

RESUMO

BACKGROUND: Sox9 (Sry box containing gene 9) is a DNA-binding transcription factor involved in chondrocyte development and sex determination. The protein's absence in testicular Sertoli nurse cells has been shown to disrupt testicular function in adults but little is known at the genome-wide level about molecular events concomitant with testicular break-down. METHODS: To determine the genome-wide effect on mRNA concentrations triggered by the absence of Sox9 in Sertoli cells we analysed adult testicular tissue from wild-type versus mutant mice with high-density oligonucleotide microarrays and integrated the output of this experiment with regulatory motif predictions and protein-protein network data. RESULTS: We report the genome-wide mRNA signature of adult testes lacking Sox9 in Sertoli cells before and after the onset of late spermatogenic failure as compared to fertile controls. The GeneChip data integrated with evolutionarily conserved Sox9 DNA binding motifs and regulatory network data identified genes involved in feminization, stress response and inflammation. CONCLUSIONS: Our results extend previous observations that genes required for female gonadogenesis are up-regulated in the absence of Sox9 in fetal Sertoli cells to the adult stage. Importantly, we identify gene networks involved in immunological processes and stress response which is reminiscent of a phenomenon occurring in a sub-group of infertile men. This suggests mice lacking Sox9 in their Sertoli cells to be a potentially useful model for adult human testicular failure.


Assuntos
Feminização/genética , Inflamação/genética , Fatores de Transcrição SOX9/genética , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Estresse Fisiológico/genética , Animais , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Modelos Animais , RNA Mensageiro/metabolismo , Testículo/embriologia , Testículo/metabolismo
18.
Reprod Biol Endocrinol ; 7: 133, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19930692

RESUMO

BACKGROUND: The LIM domain protein Fhl5 was previously found to interact with CREM, a DNA binding transcriptional regulator necessary for spermiogenesis in mammals. Co-transfection experiments using heterologous promoter constructs indicated a role for Fhl5 in transcriptional up-regulation of CREM-dependent testicular genes. Male mice lacking Fhl5 were reported to be fertile but displayed partially abnormal sperm maturation and morphology. METHODS: To identify Fhl5 testicular target genes we carried out two whole-genome expression profiling experiments using high-density oligonucleotide microarrays and total testis samples from Fhl5 wild-type versus homozygous mutant mice first in different and then in isogenic strain backgrounds. RESULTS: Weak signal differences were detected in non-isogenic samples but no statistically significant expression changes were observed when isogenic Fhl5 mutant and wild-type samples were compared. CONCLUSION: The outcome of these experiments suggests that testicular expression profiling is extremely sensitive to the genetic background and that Fhl5 is not essential for testicular gene expression to a level detected by microarray-based measurements. This might be due to redundant function of the related and similarly expressed protein Fhl4.


Assuntos
Expressão Gênica , Espermatogênese/genética , Espermatozoides/citologia , Testículo/metabolismo , Fatores de Transcrição/fisiologia , Animais , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica , Proteínas com Domínio LIM , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Ligação Proteica , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Transativadores/genética , Transativadores/metabolismo , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Brain Pathol ; 29(3): 336-350, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30403311

RESUMO

Diffuse gliomas progress by invading neighboring brain tissue to promote postoperative relapse. Transcription factor SOX2 is highly expressed in invasive gliomas and maps to chromosome region 3q26 together with the genes for PI3K/AKT signaling activator PIK3CA and effector molecules of mitochondria fusion and cell invasion, MFN1 and OPA1. Gene copy number analysis at 3q26 from 129 glioma patient biopsies revealed mutually exclusive SOX2 amplifications (26%) and OPA1 losses (19%). Both forced SOX2 expression and OPA1 inactivation increased LN319 glioma cell invasion in vitro and promoted cell dispersion in vivo in xenotransplanted D. rerio embryos. While PI3 kinase activity sustained SOX2 expression, pharmacological PI3K/AKT pathway inhibition decreased invasion and resulted in SOX2 nucleus-to-cytoplasm translocation in an mTORC1-independent manner. Chromatin immunoprecipitation and luciferase reporter gene assays together demonstrated that SOX2 trans-activates PIK3CA and OPA1. Thus, SOX2 activates PI3K/AKT signaling in a positive feedback loop, while OPA1 deletion is interpreted to counteract OPA1 trans-activation. Remarkably, neuroimaging of human gliomas with high SOX2 or low OPA1 genomic imbalances revealed significantly larger necrotic tumor zone volumes, corresponding to higher invasive capacities of tumors, while autologous necrotic cells are capable of inducing higher invasion in SOX2 overexpressing or OPA1 knocked-down relative to parental LN319. We thus propose necrosis volume as a surrogate marker for the assessment of glioma invasive potential. Whereas glioma invasion is activated by a PI3K/AKT-SOX2 loop, it is reduced by a cryptic invasion suppressor SOX2-OPA1 pathway. Thus, PI3K/AKT-SOX2 and mitochondria fission represent connected signaling networks regulating glioma invasion.


Assuntos
Cromossomos Humanos Par 3 , Classe I de Fosfatidilinositol 3-Quinases/genética , GTP Fosfo-Hidrolases/genética , Glioma/genética , Fatores de Transcrição SOXB1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Variações do Número de Cópias de DNA , GTP Fosfo-Hidrolases/metabolismo , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Necrose/genética , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
20.
Physiol Genomics ; 32(2): 207-18, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18000159

RESUMO

Muscle atrophy is a major hallmark of amyotrophic lateral sclerosis (ALS), the most frequent adult-onset motor neuron disease. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we used the G86R superoxide dismutase-1 transgenic mouse model of ALS and performed high-density oligonucleotide microarrays. We compared these data to those obtained by axotomy-induced denervation. A major set of gene regulations in G86R muscles resembled those of surgically denervated muscles, but many others appeared specific to the ALS condition. The first significant transcriptional changes appeared in a subpopulation of mice before the onset of overt clinical symptoms and motor neuron death. These early changes affected genes involved in detoxification (e.g., ALDH3, metallothionein-2, and thioredoxin-1) and regeneration (e.g., BTG1, RB1, and RUNX1) but also tissue degradation (e.g., C/EBPdelta and DDIT4) and cell death (e.g., ankyrin repeat domain-1, CDKN1A, GADD45alpha, and PEG3). Of particular interest, metallothionein-1 and -2, ATF3, cathepsin-Z, and galectin-3 genes appeared, among others, commonly regulated in both skeletal muscle (our present data) and spinal motor neurons (as previously reported) of paralyzed ALS mice. The importance of these findings is twofold. First, they designate the distal part of the motor unit as a primary site of disease. Second, they identify specific gene regulations to be explored in the search for therapeutic strategies that could alleviate disease before motor neuron death manifests clinically.


Assuntos
Esclerose Lateral Amiotrófica/genética , Perfilação da Expressão Gênica/métodos , Músculo Esquelético/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Análise por Conglomerados , Bases de Dados Genéticas , Modelos Animais de Doenças , Membro Posterior , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA