Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7709): 254-259, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769723

RESUMO

Volume-regulated anion channels are activated in response to hypotonic stress. These channels are composed of closely related paralogues of the leucine-rich repeat-containing protein 8 (LRRC8) family that co-assemble to form hexameric complexes. Here, using cryo-electron microscopy and X-ray crystallography, we determine the structure of a homomeric channel of the obligatory subunit LRRC8A. This protein conducts ions and has properties in common with endogenous heteromeric channels. Its modular structure consists of a transmembrane pore domain followed by a cytoplasmic leucine-rich repeat domain. The transmembrane domain, which is structurally related to connexin proteins, is wide towards the cytoplasm but constricted on the outside by a structural unit that acts as a selectivity filter. An excess of basic residues in the filter and throughout the pore attracts anions by electrostatic interaction. Our work reveals the previously unknown architecture of volume-regulated anion channels and their mechanism of selective anion conduction.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura , Animais , Membrana Celular/metabolismo , Conexinas/química , Cristalografia por Raios X , Citoplasma/metabolismo , Células HEK293 , Humanos , Proteínas de Repetições Ricas em Leucina , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 115(39): E9095-E9104, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30190435

RESUMO

Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca2+-binding site (Cai2+), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca2+ to a cytoplasmic site (Caa2+). An X-ray structure with Caa2+ removed and a near-atomic resolution cryo-EM structure with Cai2+ removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca2+ ions for activation.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Canais de Cálcio/química , Ativação do Canal Iônico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos , Relação Estrutura-Atividade
3.
Nat Struct Mol Biol ; 30(1): 52-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522427

RESUMO

Volume-regulated anion channels (VRACs) participate in the cellular response to osmotic swelling. These membrane proteins consist of heteromeric assemblies of LRRC8 subunits, whose compositions determine permeation properties. Although structures of the obligatory LRRC8A, also referred to as SWELL1, have previously defined the architecture of VRACs, the organization of heteromeric channels has remained elusive. Here we have addressed this question by the structural characterization of murine LRRC8A/C channels. Like LRRC8A, these proteins assemble as hexamers. Despite 12 possible arrangements, we find a predominant organization with an A:C ratio of two. In this assembly, four LRRC8A subunits cluster in their preferred conformation observed in homomers, as pairs of closely interacting proteins that stabilize a closed state of the channel. In contrast, the two interacting LRRC8C subunits show a larger flexibility, underlining their role in the destabilization of the tightly packed A subunits, thereby enhancing the activation properties of the protein.


Assuntos
Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Ânions/metabolismo
4.
bioRxiv ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37205530

RESUMO

CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg 2+ , and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg 2+ . Two sABs from these selections, C12 and C18, showed different degrees of Mg 2+ -sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg 2+ -depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg 2+ -depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg 2+ ] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.

5.
J Mol Biol ; 435(17): 168192, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394032

RESUMO

CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg2+, and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg2+. Two sABs from these selections, C12 and C18, showed different degrees of Mg2+-sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg2+-depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg2+-depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg2+] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.


Assuntos
Anticorpos , Proteínas de Bactérias , Proteínas de Transporte de Cátions , Canais Iônicos , Magnésio , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Canais Iônicos/química , Canais Iônicos/imunologia , Magnésio/química , Magnésio/metabolismo , Conformação Proteica , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/imunologia , Anticorpos/química
6.
Sci Adv ; 8(28): eabn8063, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857509

RESUMO

Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward ß-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.


Assuntos
Receptores CXCR4 , Transdução de Sinais , Arrestina , Ligação Proteica , Receptores CXCR4/metabolismo , beta-Arrestinas/metabolismo
7.
Nat Commun ; 12(1): 4893, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385445

RESUMO

The Tweety homologs (TTYHs) are members of a conserved family of eukaryotic membrane proteins that are abundant in the brain. The three human paralogs were assigned to function as anion channels that are either activated by Ca2+ or cell swelling. To uncover their unknown architecture and its relationship to function, we have determined the structures of human TTYH1-3 by cryo-electron microscopy. All structures display equivalent features of a dimeric membrane protein that contains five transmembrane segments and an extended extracellular domain. As none of the proteins shows attributes reminiscent of an anion channel, we revisited functional experiments and did not find any indication of ion conduction. Instead, we find density in an extended hydrophobic pocket contained in the extracellular domain that emerges from the lipid bilayer, which suggests a role of TTYH proteins in the interaction with lipid-like compounds residing in the membrane.


Assuntos
Canais de Cloreto/ultraestrutura , Microscopia Crioeletrônica/métodos , Proteínas de Membrana/ultraestrutura , Proteínas de Neoplasias/ultraestrutura , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Conformação Proteica
8.
Nat Commun ; 12(1): 5435, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521847

RESUMO

Members of the LRRC8 family form heteromeric assemblies, which function as volume-regulated anion channels. These modular proteins consist of a transmembrane pore and cytoplasmic leucine-rich repeat (LRR) domains. Despite their known molecular architecture, the mechanism of activation and the role of the LRR domains in this process has remained elusive. Here we address this question by generating synthetic nanobodies, termed sybodies, which target the LRR domain of the obligatory subunit LRRC8A. We use these binders to investigate their interaction with homomeric LRRC8A channels by cryo-electron microscopy and the consequent effect on channel activation by electrophysiology. The five identified sybodies either inhibit or enhance activity by binding to distinct epitopes of the LRR domain, thereby altering channel conformations. In combination, our work provides a set of specific modulators of LRRC8 proteins and reveals the role of their cytoplasmic domains as regulators of channel activity by allosteric mechanisms.


Assuntos
Epitopos/química , Canais Iônicos/química , Proteínas de Membrana/química , Anticorpos de Domínio Único/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Animais , Clonagem Molecular , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Transporte de Íons , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Especificidade por Substrato
9.
Elife ; 92020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374262

RESUMO

The transport of substances across the placenta is essential for the development of the fetus. Here, we were interested in the role of channels of the calcium homeostasis modulator (CALHM) family in the human placenta. By transcript analysis, we found the paralogs CALHM2, 4, and 6 to be highly expressed in this organ and upregulated during trophoblast differentiation. Based on electrophysiology, we observed that activation of these paralogs differs from the voltage- and calcium-gated channel CALHM1. Cryo-EM structures of CALHM4 display decameric and undecameric assemblies with large cylindrical pore, while in CALHM6 a conformational change has converted the pore shape into a conus that narrows at the intracellular side, thus describing distinct functional states of the channel. The pore geometry alters the distribution of lipids, which occupy the cylindrical pore of CALHM4 in a bilayer-like arrangement whereas they have redistributed in the conical pore of CALHM6 with potential functional consequences.


Assuntos
Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Glicoproteínas de Membrana/metabolismo , Placenta/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/ultraestrutura , Feminino , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestrutura , Lipídeos de Membrana/metabolismo , Potenciais da Membrana , Modelos Moleculares , Placenta/ultraestrutura , Gravidez , Conformação Proteica , Relação Estrutura-Atividade
10.
J Mol Biol ; 430(3): 337-347, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273204

RESUMO

Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones.


Assuntos
Antígenos/química , Microscopia Crioeletrônica/métodos , Fragmentos Fab das Imunoglobulinas/química , Antígenos/ultraestrutura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , Cristalização/métodos , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Biblioteca de Peptídeos , Conformação Proteica , Engenharia de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
11.
PLoS One ; 7(12): e50791, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251384

RESUMO

ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.


Assuntos
Proteínas ADAM/genética , Carcinoma/genética , Neoplasias do Colo/genética , Citocinas/metabolismo , Neovascularização Patológica/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Carcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Colo/metabolismo , Neoplasias do Colo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Fosforilação , RNA Interferente Pequeno , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA