RESUMO
A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5 Zn8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10-11 m2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I2 flow battery at 60 mAh cm-2 and 60 mA cm-2 , performance that meets practical demands.
RESUMO
Amidst the global trend of advancing renewable energies toward carbon neutrality, energy storage becomes increasingly critical due to the intermittency of renewables. As an alternative to lithium-ion batteries (LIBs), aqueous batteries have received growing attention for large-scale energy storage due to their economical and safe features. Despite the fruitful achievements at the material level, the reliability and lifetime of aqueous batteries are still far from satisfactory. Alike LIBs, integrating smartness is essential for more reliable and long-life aqueous batteries via operando monitoring and automatic response to extreme abuses. In this review, recent advances in sensing techniques and multifunctional battery-sensor systems together with self-healing methods in aqueous batteries is summarized. The significant role of artificial intelligence in designing and optimizing aqueous batteries with high efficiency is also highlighted. Ultimately, it is extrapolated toward the future and present the humble perspective for building smarter aqueous batteries.
RESUMO
Many optimization strategies have been employed to stabilize zinc anodes of zinc-ion batteries (ZIBs). Although these commonly used strategies can improve anode performance, they simultaneously induce specific issues. In this study, through the combination of structural design, interface modification, and electrolyte optimization, an 'all-in-one' (AIO) electrode was developed. Compared to the three-dimensional (3D) anode in routine liquid electrolytes, the new AIO electrode can greatly suppress gas evolution and the occurrence of side reactions induced by active water molecules, while retaining the merits of a 3D anode. Moreover, the integrated AIO strategy achieves a sufficient electrode/electrolyte interface contact area, so that the electrode can promote electron/ion transfer, and ensure a fast and complete redox reaction. As a result, it achieves excellent shelving-restoring ability (60 hours, four times) and 1200 cycles of long-term stability without apparent polarization. When paired with two common cathode materials used in ZIBs (α-MnO2 and NH4V4O10), full batteries with the AIO electrode demonstrate high capacity and good stability. The strategy of the 'all-in-one' architectural design is enlightened to solve the issues of zinc anodes in advanced Zn-based batteries.