Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Bioinformatics ; 40(8)2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39078114

RESUMO

SUMMARY: Genome assembly projects have grown exponentially due to breakthroughs in sequencing technologies and assembly algorithms. Evaluating the quality of genome assemblies is critical to ensure the reliability of downstream analysis and interpretation. To fulfil this task, we have developed the AssemblyQC pipeline that performs file-format validation, contaminant checking, contiguity measurement, gene- and repeat-space completeness quantification, telomere inspection, taxonomic assignment, synteny alignment, scaffold examination through Hi-C contact-map visualization, and assessments of completeness, consensus quality and phasing through k-mer analysis. It produces a comprehensive HTML report with method descriptions, tables, and visualizations. AVAILABILITY AND IMPLEMENTATION: The pipeline uses Nextflow for workflow orchestration and adheres to the best-practice established by the nf-core community. This pipeline offers a reproducible, scalable, and portable method to assess the quality of genome assemblies-the code is available online at GitHub: https://github.com/Plant-Food-Research-Open/assemblyqc.


Assuntos
Software , Análise de Sequência de DNA/métodos , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Genômica/métodos
2.
Plant J ; 113(4): 772-786, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575587

RESUMO

Propagation through stem cuttings is a popular method worldwide for species such as fruit tree rootstocks and forest trees. Adventitious root (AR) formation from stem cuttings is crucial for effective and successful clonal propagation of apple rootstocks. Strigolactones (SLs) are newly identified hormones involved in AR formation. However, the regulatory mechanisms underpinning this process remain elusive. In the present study, weighted gene co-expression network analysis, as well as rooting assays using stable transgenic apple materials, revealed that MdBRC1 served as a key gene in the inhibition of AR formation by SLs. We have demonstrated that MdSMXL7 and MdWRKY6 synergistically regulated MdBRC1 expression, depending on the interactions of MdSMXL7 and MdWRKY6 at the protein level downstream of SLs as well as the direct promoter binding on MdBRC1 by MdWRKY6. Furthermore, biochemical studies and genetic analysis revealed that MdBRC1 inhibited AR formation by triggering the expression of MdGH3.1 in a transcriptional activation pathway. Finally, the present study not only proposes a component, MdWRKY6, that enables MdSMXL7 to regulate MdBRC1 during the process of SL-controlled AR formation in apple, but also provides prospective target genes to enhance AR formation capacity using CRISPR (i.e. clustered regularly interspaced short palindromic repeats) technology, particularly in woody plants.


Assuntos
Malus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Malus/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Plant J ; 116(5): 1492-1507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37648286

RESUMO

Dihydrochalcones (DHCs) including phlorizin (phloretin 2'-O-glucoside) and its positional isomer trilobatin (phloretin 4'-O-glucoside) are the most abundant phenylpropanoids in apple (Malus spp.). Transcriptional regulation of DHC production is poorly understood despite their importance in insect- and pathogen-plant interactions in human physiology research and in pharmaceuticals. In this study, segregation in hybrid populations and bulked segregant analysis showed that the synthesis of phlorizin and trilobatin in Malus leaves are both single-gene-controlled traits. Promoter sequences of PGT1 and PGT2, two glycosyltransferase genes involved in DHC glycoside synthesis, were shown to discriminate Malus with different DHC glycoside patterns. Differential PGT1 and PGT2 promoter activities determined DHC glycoside accumulation patterns between genotypes. Two transcription factors containing MYB-like DNA-binding domains were then shown to control DHC glycoside patterns in different tissues, with PRR2L mainly expressed in leaf, fruit, flower, stem, and seed while MYB8L mainly expressed in stem and root. Further hybridizations between specific genotypes demonstrated an absolute requirement for DHC glycoside production in Malus during seed development which explains why no Malus spp. with a null DHC chemotype have been reported.


Assuntos
Malus , Humanos , Malus/genética , Florizina , Fatores de Transcrição/genética , Floretina , Sementes/genética , Glucosídeos , Regulação da Expressão Gênica de Plantas
4.
New Phytol ; 242(3): 1218-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481030

RESUMO

Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Nitrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
BMC Plant Biol ; 23(1): 280, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231379

RESUMO

BACKGROUND: Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS: Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene ß-myrcene and the sesquiterpenes α-humulene and ß-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. ß-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS: Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.


Assuntos
Humulus , Humulus/genética , Humulus/metabolismo , Alelos , Melhoramento Vegetal , Terpenos/metabolismo
6.
Plant Biotechnol J ; 20(7): 1285-1297, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258172

RESUMO

Allele-specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar 'Royal Gala' (RG). A high quality chromosome-level genome was assembled using a homozygous tetra-haploid RG plant, derived from anther cultures. Using RNA-sequencing (RNA-seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of 'Golden Delicious' (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele-specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele-specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome-wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.


Assuntos
Malus , Alelos , Antocianinas , Cor , Elementos de DNA Transponíveis , Flores/genética , Flores/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Malus/metabolismo , Proteínas de Plantas/genética
7.
J Exp Bot ; 73(5): 1344-1356, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34664645

RESUMO

Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.


Assuntos
Proantocianidinas , Vaccinium , Antocianinas/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Vaccinium/genética , Vaccinium/metabolismo
8.
Mol Plant Microbe Interact ; 32(11): 1463-1467, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31313627

RESUMO

Venturia nashicola, the cause of scab disease of Asian pears, is a host-specific, biotrophic fungus. It is restricted to Asia and is regarded as a quarantine threat outside this region. European pear displays nonhost resistance (NHR) to V. nashicola and Asian pears are nonhosts of V. pyrina (the cause of European pear scab disease). The host specificity of these two fungi is likely governed by differences in their effector arsenals, with a subset hypothesized to activate NHR. The Pyrus-Venturia pathosystem provides an opportunity to dissect the underlying genetics of nonhost interactions in this potentially more durable form of resistance. The V. nashicola genome will enable comparisons to other Venturia spp. genomes to identify effectors that potentially activate NHR in the pear scab pathosystem.


Assuntos
Ascomicetos , Genoma Fúngico , Pyrus , Ascomicetos/genética , Genoma Fúngico/genética , Especificidade de Hospedeiro/genética , Modelos Biológicos , Doenças das Plantas/microbiologia , Pyrus/microbiologia
9.
BMC Genomics ; 20(1): 331, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046664

RESUMO

BACKGROUND: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development. To address this gap, we designed a high-density, high-efficiency and robust single nucleotide polymorphism (SNP) array for pear, with the main objectives of conducting genetic diversity and genome-wide association studies. RESULTS: By applying a two-step design process, which consisted of the construction of a first 'draft' array for the screening of a small subset of samples, we were able to identify the most robust and informative SNPs to include in the Applied Biosystems™ Axiom™ Pear 70 K Genotyping Array, currently the densest SNP array for pear. Preliminary evaluation of this 70 K array in 1416 diverse pear accessions from the USDA National Clonal Germplasm Repository (NCGR) in Corvallis, OR identified 66,616 SNPs (93% of all the tiled SNPs) as high quality and polymorphic (PolyHighResolution). We further used the Axiom Pear 70 K Genotyping Array to construct high-density linkage maps in a bi-parental population, and to make a direct comparison with available genotyping-by-sequencing (GBS) data, which suggested that the SNP array is a more robust method of screening for SNPs than restriction enzyme reduced representation sequence-based genotyping. CONCLUSIONS: The Axiom Pear 70 K Genotyping Array, with its high efficiency in a widely diverse panel of Pyrus species and cultivars, represents a valuable resource for a multitude of molecular studies in pear. The characterization of the USDA-NCGR collection with this array will provide important information for pear geneticists and breeders, as well as for the optimization of conservation strategies for Pyrus.


Assuntos
Mapeamento Cromossômico/métodos , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Pyrus/genética , Sementes/genética , Cromossomos de Plantas , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem
10.
Plant Biotechnol J ; 17(10): 1954-1970, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30950186

RESUMO

Crop evolution is a long-term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome-wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue-specific expression patterns indicated that the up-regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up-regulated selection genes were identified in leaves and seeds than in the other organs. Genome-wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large-scale characterization of key agronomic traits in this crop species.


Assuntos
Domesticação , Metagenômica , Prunus persica/genética , Evolução Molecular , Frutas , Estudos de Associação Genética , Genoma de Planta , Filogenia , Polimorfismo de Nucleotídeo Único
11.
Mol Plant Microbe Interact ; 31(1): 145-162, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29144204

RESUMO

Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.


Assuntos
Cladosporium/metabolismo , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Alelos , Sequência de Aminoácidos , Cladosporium/química , Cladosporium/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteômica , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de RNA , Transcriptoma/genética
12.
BMC Genomics ; 19(1): 833, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463521

RESUMO

BACKGROUND: Chromosomal level reference genomes provide a crucial foundation for genomics research such as genome-wide association studies (GWAS) and whole genome selection. The chromosomal-level sequences of both the European (Pyrus communis) and Chinese (P. bretschneideri) pear genomes have not been published in public databases so far. RESULTS: To anchor the scaffolds of P. bretschneideri 'DangshanSuli' (DS) v1.0 genome into pseudo-chromosomes, two genetic maps (MH and YM maps) were constructed using half sibling populations of Chinese pear crosses, 'Mantianhong' (MTH) × 'Hongxiangsu' (HXS) and 'Yuluxiang' (YLX) × MTH, from 345 and 162 seedlings, respectively, which were prepared for SNP discovery using genotyping-by-sequencing (GBS) technology. The MH and YM maps, each with 17 linkage groups (LGs), were constructed from 2606 and 2489 SNP markers and spanned 1847 and 1668 cM, respectively, with average marker intervals of 0.7. The two maps were further merged with a previously published genetic map (BD) based on the cross 'Bayuehong' (BYH) × 'Dangshansuli' (DS) to build a new integrated MH-YM-BD map. By using 7757 markers located on the integrated MH-YM-BD map, 898 scaffolds (400.57 Mb) of the DS v1.0 assembly were successfully anchored into 17 pseudo-chromosomes, accounting for 78.8% of the assembled genome size. About 88.31% of them (793 scaffolds) were directionally anchored with two or more markers on the pseudo-chromosomes. Furthermore, the errors in each pseudo-chromosome (especially 1, 5, 7 and 11) were manually corrected and pseudo-chromosomes 1, 5 and 7 were extended by adding 19, 12 and 14 scaffolds respectively in the newly constructed DS v1.1 genome. Synteny analyses revealed that the DS v1.1 genome had high collinearity with the apple genome, and the homologous fragments between pseudo-chromosomes were similar to those found in previous studies. Moreover, the red-skin trait of Asian pear was mapped to an identical locus as identified previously. CONCLUSIONS: The accuracy of DS v1.1 genome was improved by using larger mapping populations and merged genetic map. With more than 400 MB anchored to 17 pseudo-chromosomes, the new DS v1.1 genome provides a critical tool that is essential for studies of pear genetics, genomics and molecular breeding.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Genoma de Planta , Genômica/métodos , Pyrus/genética , Evolução Molecular , Ligação Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
13.
BMC Genomics ; 18(1): 339, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464870

RESUMO

BACKGROUND: Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS: Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS: Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Genômica , Especificidade de Hospedeiro , Rosaceae/microbiologia , Ascomicetos/citologia , Ascomicetos/patogenicidade , Parede Celular/enzimologia , Doenças das Plantas/microbiologia , Virulência
14.
Nat Genet ; 56(3): 505-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347217

RESUMO

Dwarfing rootstocks have transformed the production of cultivated apples; however, the genetic basis of rootstock-induced dwarfing remains largely unclear. We have assembled chromosome-level, near-gapless and haplotype-resolved genomes for the popular dwarfing rootstock 'M9', the semi-vigorous rootstock 'MM106' and 'Fuji', one of the most commonly grown apple cultivars. The apple orthologue of auxin response factor 3 (MdARF3) is in the Dw1 region of 'M9', the major locus for rootstock-induced dwarfing. Comparing 'M9' and 'MM106' genomes revealed a 9,723-bp allele-specific long terminal repeat retrotransposon/gypsy insertion, DwTE, located upstream of MdARF3. DwTE is cosegregated with the dwarfing trait in two segregating populations, suggesting its prospective utility in future dwarfing rootstock breeding. In addition, our pipeline discovered mobile mRNAs that may contribute to the development of dwarfed scion architecture. Our research provides valuable genomic resources and applicable methodology, which have the potential to accelerate breeding dwarfing rootstocks for apple and other perennial woody fruit trees.


Assuntos
Malus , Malus/genética , Haplótipos/genética , Raízes de Plantas/genética , Melhoramento Vegetal , Fenótipo
15.
Biomolecules ; 13(9)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37759803

RESUMO

The availability of multiple sequenced genomes from a single species made it possible to explore intra- and inter-specific genomic comparisons at higher resolution and build clade-specific pan-genomes of several crops. The pan-genomes of crops constructed from various cultivars, accessions, landraces, and wild ancestral species represent a compendium of genes and structural variations and allow researchers to search for the novel genes and alleles that were inadvertently lost in domesticated crops during the historical process of crop domestication or in the process of extensive plant breeding. Fortunately, many valuable genes and alleles associated with desirable traits like disease resistance, abiotic stress tolerance, plant architecture, and nutrition qualities exist in landraces, ancestral species, and crop wild relatives. The novel genes from the wild ancestors and landraces can be introduced back to high-yielding varieties of modern crops by implementing classical plant breeding, genomic selection, and transgenic/gene editing approaches. Thus, pan-genomic represents a great leap in plant research and offers new avenues for targeted breeding to mitigate the impact of global climate change. Here, we summarize the tools used for pan-genome assembly and annotations, web-portals hosting plant pan-genomes, etc. Furthermore, we highlight a few discoveries made in crops using the pan-genomic approach and future potential of this emerging field of study.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Genômica , Edição de Genes , Domesticação , Produtos Agrícolas/genética
16.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37266976

RESUMO

Vibrio parahaemolyticus has been identified as an emerging human pathogen worldwide with cases undergoing a global expansion over recent decades in phase with climate change. New Zealand had remained free of outbreaks until 2019, but different outbreaks have been reported consecutively since then. To provide new insights into the recent emergence of cases associated with outbreak clones over recent years, a comparative genomic study was carried out using a selection of clinical (mostly outbreak) and environmental isolates of V. parahaemolyticus obtained in New Zealand between 1973 and 2021. Among 151 isolates of clinical (n=60) and environmental (n=91) origin, 47 sequence types (STs) were identified, including 31 novel STs. The population of environmental isolates generated 30 novel STs, whereas only 1 novel ST (ST2658) was identified among the population of clinical isolates. The novel clinical ST was a single-locus variant of the pandemic ST36 strain, indicating further evolution of this pandemic strain. The environmental isolates exhibited a significant genetic heterogeneity compared to the clinical isolates. The whole-genome phylogeny separated the population of clinical isolates from their environmental counterparts, clearly indicating their distant genetic relatedness. In addition to differences in ancestral profiles and genetic relatedness, these two groups of isolates exhibited a profound difference in their virulence profiles. While the entire population of clinical isolates harboured the thermostable direct haemolysin (tdh) and/or the thermostable-related haemolysin (trh), only a few isolates of environmental origin possessed the same virulence genes. In contrast to tdh and trh, adhesin-encoding genes, vpadF and MSHA, showed a significantly (P<0.001) greater association with the environmental isolates compared to the clinical isolates. The effectors, VopQ, VPA0450 and VopS, which belong to T3SS1, were ubiquitous, being present in each isolate regardless of its origin. The effectors VopC and VopA, which belong to T3SS2, were rarely detected in any of the examined isolates. Our data indicate that the clinical and environmental isolates of V. parahaemolyticus from New Zealand differ in their population structures, ancestral profiles, genetic relatedness and virulence profiles. In addition, we identified numerous unique non-synonymous single-nucleotide polymorphisms (nsSNPs) in adhesins and effectors, exclusively associated with the clinical isolates tested, which may suggest a possible role of these mutations in the overall virulence of the clinical isolates.


Assuntos
Vibrio parahaemolyticus , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Vibrio parahaemolyticus/genética , Nova Zelândia/epidemiologia , Virulência/genética , Genômica
17.
Database (Oxford) ; 20232023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079567

RESUMO

Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.


Assuntos
Big Data , Bases de Dados Genéticas , Genótipo , Fenótipo , Melhoramento Vegetal
18.
Methods Enzymol ; 671: 63-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878994

RESUMO

Carotenoid compounds accumulate to confer coloration to plant tissues and have some established health benefits in humans. These pigments have antioxidant properties and are precursors of vitamin A, which is important for human vision. Apple is widely consumed globally, but most commercial apple cultivars have low fruit carotenoid content because these pigments accumulate mostly in the fruit skin rather than the flesh (the majority of the edible portion). Although carotenoids accumulate in the early stages of fruit development, much of this carotenoid is lost by fruit maturity as a result of low biosynthetic rate, rapid turnover of compounds and/or lack of storage capacity in these tissues. Improving apple fruit carotenoid content through traditional breeding or genetic technologies, will take a long time because of the extended juvenile phase of the trees and limited germplasm diversity within many commercial breeding programs. This process, however, can be accelerated by fundamental understanding of the apple carotenoid biosynthetic pathway and the mechanisms controlling the metabolic steps. The availability of a well annotated apple genome sequence has led to the identification of apple carotenoid gene families and potential transcription factors. This is an important step since the knowledge could be used to elevate carotenoid content either through breeding or genetic transformation techniques. Here, we provide an overview of carotenogenesis in apple and outline the methods employed to improve the carotenoid content of this horticultural crop.


Assuntos
Malus , Vias Biossintéticas/genética , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 13: 965397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247546

RESUMO

Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.

20.
Front Plant Sci ; 13: 910155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812927

RESUMO

Vaccinium berries are regarded as "superfoods" owing to their high concentrations of anthocyanins, flavonoid metabolites that provide pigmentation and positively affect human health. Anthocyanin localization differs between the fruit of cultivated highbush blueberry (V. corymbosum) and wild bilberry (V. myrtillus), with the latter having deep red flesh coloration. Analysis of comparative transcriptomics across a developmental series of blueberry and bilberry fruit skin and flesh identified candidate anthocyanin regulators responsible for this distinction. This included multiple activator and repressor transcription factors (TFs) that correlated strongly with anthocyanin production and had minimal expression in blueberry (non-pigmented) flesh. R2R3 MYB TFs appeared key to the presence and absence of anthocyanin-based pigmentation; MYBA1 and MYBPA1.1 co-activated the pathway while MYBC2.1 repressed it. Transient overexpression of MYBA1 in Nicotiana benthamiana strongly induced anthocyanins, but this was substantially reduced when co-infiltrated with MYBC2.1. Co-infiltration of MYBC2.1 with MYBA1 also reduced activation of DFR and UFGT, key anthocyanin biosynthesis genes, in promoter activation studies. We demonstrated that these TFs operate within a regulatory hierarchy where MYBA1 activated the promoters of MYBC2.1 and bHLH2. Stable overexpression of VcMYBA1 in blueberry elevated anthocyanin content in transgenic plants, indicating that MYBA1 is sufficient to upregulate the TF module and activate the pathway. Our findings identify TF activators and repressors that are hierarchically regulated by SG6 MYBA1, and fine-tune anthocyanin production in Vaccinium. The lack of this TF module in blueberry flesh results in an absence of anthocyanins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA