Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(32): 15842-15848, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324741

RESUMO

Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.


Assuntos
Citometria de Fluxo/métodos , Imageamento Tridimensional , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Microalgas/citologia , Microalgas/metabolismo , Coloração e Rotulagem
2.
Opt Express ; 24(23): 26307-26321, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857366

RESUMO

Energy transfer between Tm3+ and Tb3+ dependent on the power density of pump laser was investigated in NaYF4: Tb3+,Tm3+,Yb3+ microcrystals. Under the excitation of a 976-nm near-infrared laser at various power densities, Tb3+-Tm3+-Yb3+ doped samples exhibited intense visible emissions with tunable color between green and blue. The ratio of blue and green emission were determined by energy transfer between Tm3+ and Tb3+. When the power density of pump laser was low, the energy transfer process from Tm3+ (3F4) to Tb3+ (7F0) occurred efficiently. Upconversion processes in Tm3+ were inhibited, only visible emissions from Tb3+ with green color were observed. When the power density increased, energy transfer from the 3F4 (Tm3+) to 7F0 level (Tb3+) was restrained and population on high energy levels of Tm3+ was increased. Contribution of upconversion emissions from Tm3+ gradually became dominant. The emission color was tuned from green to blue with increasing the power density. Energy transfer processes between low-lying levels of activators, such as Tm3+ will greatly reduce the population on certain levels for further high-order upconversion processes. The Tb3+-Tm3+-Yb3+ doped phosphors are promising materials for detecting the condition of power density of the invisible near-infrared laser.

3.
Opt Express ; 23(4): 4125-34, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836450

RESUMO

We demonstrate the broadband cascaded four-wave mixing (FWM) and supercontinuum (SC) generation in a tellurite MOF which is made from 76.5TeO(2)-6ZnO-11.5Li(2)O-6Bi(2)O(3) (TZLB, mol%) glass. By using a 2-µm picosecond laser with the center wavelength of ~1958 nm as the pump source, the broadband FWM with the frequency separation of ~1.1 THz is obtained. The bandwidth of the frequency comb spans a range of ~630 nm from ~1620 to 2250 nm at the average pump power of ~125 mW. With the average pump power increasing to ~800 mW, the broadband mid-infrared SC generation with the spectrum from ~900 to 3900 nm is observed. Changing the pump source to a femtosecond laser (optical parametric oscillator, OPO) with the center wavelength of ~2000 nm, solitons and dispersive waves (DWs) are obtained.

4.
Opt Express ; 23(16): 20647-54, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367917

RESUMO

We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ~80 MHz and ~200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ~1800 nm. With the average pump power increasing from ~200 to 450 mW, the center wavelength of the 1st DW decreases from ~956 to 890 nm, the 2nd DW from ~1039 to 997 nm, the 3rd DW from ~1101 to 1080 nm, and the 4th DW from ~1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ~1400 and 2000 nm are investigated at the average pump power of ~350 mW.

5.
Appl Opt ; 54(6): 1326-30, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968195

RESUMO

We designed and fabricated a tellurite (76.5TeO(2)-6Bi(2)O(3)-11.5Li(2)O-6ZnO, mol. %) microstructured optical fiber (TMOF) with four air holes for widely tunable third-harmonic generation (THG). The loss of the TMOF is ~0.2 dB/m at 1550 nm. Widely tunable THG from ~567 to 902 nm is obtained when the TMOF is pumped by an optical parametric oscillator with the pump wavelength changing from ~1700 to 2700 nm. The mechanism of THG in this work is further investigated through the third-harmonic signal pattern, which is due to the high nonlinearity of the TMOF and the high pump power, not from the phase-matching process between the fundamental mode and the high-order TH mode.

6.
Opt Express ; 22(19): 23019-25, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321772

RESUMO

novel AsSe(2)-As(2)S(5) hybrid MOF (HMOF) is designed and fabricated by the rod-in-tube drawing technique. The core is made from AsSe2 glass and the cladding is made from As(2)S(5) glass. The loss is ~1.2 dB/m at ~3000 nm. Zero dispersion wavelength (ZDW) of the HMOF is ~3380 nm. Supercontinuum (SC) generation in a 2 cm-long HMOF is investigated with the pump wavelengths of ~3062, 3241 and 3389 nm from a tunable optical parametric oscillator (OPO) system. Broadband midinfrared (MIR) SC generation with the spectrum from ~1256 to 5400 nm is obtained with the peak power of ~1337 kW at the wavelength of ~3389 nm.


Assuntos
Vidro/química , Fibras Ópticas , Telúrio/química , Desenho de Equipamento , Raios Infravermelhos
7.
Opt Express ; 22(20): 23920-7, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321969

RESUMO

An elliptical core tellurite microstructured optical fiber with high birefringence was demonstrated and the chromatic dispersion of the two orthogonal modes in this fiber was experimentally characterized by a white light spectral interferometric technique over a wide spectral range. A series of spectral interferograms as a function of the optical path difference were recorded in the Mach-Zehnder interferometer. The birefringence dependence of the wavelength in the fiber was determined by interferograms. The measured and calculated dispersion matched well within the whole spectrum range under test.

8.
Opt Express ; 22(11): 13322-9, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921526

RESUMO

A hybrid four-hole AsSe2-As2S5 microstructured optical fiber (MOF) with a large refractive index difference is fabricated by the rod-in-tube drawing technique. The core and the cladding are made from the AsSe2 glass and As2S5 glass, respectively. The propagation loss is ~1.8 dB/m and the nonlinear coefficient is ~2.03 × 10(4) km(-1)W(-1) at 2000 nm. Raman scattering is observed in the normal dispersion regime when the fiber is pumped by a 2 µm mode-locked picosecond fiber laser. Additionally, soliton is generated in the anomalous dispersion regime when the fiber is pumped by an optical parametric oscillator (OPO) at the pump wavelength of ~3000 nm.

9.
Opt Express ; 22(4): 3740-6, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663691

RESUMO

Soliton self-frequency shift (SSFS) and third-harmonic generation (THG) are observed in a four-hole As2S5 chalcogenide microstructured optical fiber (MOF). The As2S5 MOF is tapered to offer an ideal environment for SSFS. After tapering, the zero-dispersion wavelength (ZDW) shifts from 2.02 to 1.61 µm, and the rate of SSFS can be enhanced by increasing the energy density of the pulse. By varying the average input power from 220 to 340 mW, SSFS of a soliton central wavelength from 2.206 to 2.600 µm in the mid-infrared is observed in the tapered segment, and THG at 632 nm is observed in the untapered segment.

10.
Opt Lett ; 39(4): 1005-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562263

RESUMO

A chalcogenide-tellurite hybrid optical fiber with a step-index structure is fabricated by the rod-in-tube drawing technique. The core is made of 15Ge-3Ga-12Sb-70S (mol. %) glass, and the cladding is made of 78TeO2-5ZnO-12Li2O-5Bi2O3 (mol. %) glass. The refractive index difference Δn=0.24. Tunable third-harmonic generation from 568 to 869 nm is observed when the optical fiber is pumped by an optical parametric oscillator with the pump wavelength changing from 1700 to 2600 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA