Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7929): 925-930, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171386

RESUMO

The paradigmatic example of a topological phase of matter, the two-dimensional Chern insulator1-5, is characterized by a topological invariant consisting of a single integer, the scalar Chern number. Extending the Chern insulator phase from two to three dimensions requires generalization of the Chern number to a three-vector6,7, similar to the three-dimensional (3D) quantum Hall effect8-13. Such Chern vectors for 3D Chern insulators have never been explored experimentally. Here we use magnetically tunable 3D photonic crystals to achieve the experimental demonstration of Chern vectors and their topological surface states. We demonstrate Chern vector magnitudes of up to six, higher than all scalar Chern numbers previously realized in topological materials. The isofrequency contours formed by the topological surface states in the surface Brillouin zone form torus knots or links, whose characteristic integers are determined by the Chern vectors. We demonstrate a sample with surface states forming a (2, 2) torus link or Hopf link in the surface Brillouin zone, which is topologically distinct from the surface states of other 3D topological phases. These results establish the Chern vector as an intrinsic bulk topological invariant in 3D topological materials, with surface states possessing unique topological characteristics.

2.
Nano Lett ; 24(20): 5929-5936, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655909

RESUMO

Multiferroic materials provide robust and efficient routes for the control of magnetism by electric fields, which have been diligently sought after for a long time. Construction of two-dimensional (2D) vdW multiferroics is a more exciting endeavor. To date, the nonvolatile manipulation of magnetism through ferroelectric polarization still remains challenging in a 2D vdW heterostructure multiferroic. Here, we report a van der Waals (vdW) heterostructure multiferroic comprising the atomically thin layered antiferromagnet (AFM) CrI3 and ferroelectric (FE) α-In2Se3. We demonstrate anomalously nonreciprocal and nonvolatile electric-field control of magnetization by ferroelectric polarization. The nonreciprocal electric control originates from an intriguing antisymmetric enhancement of interlayer ferromagnetic coupling in the opposite ferroelectric polarization configurations of α-In2Se3. Our work provides numerous possibilities for creating diverse heterostructure multiferroics at the limit of a few atomic layers for multistage magnetic memories and brain-inspired in-memory computing.

3.
Opt Express ; 31(9): 14593-14603, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157320

RESUMO

Reflection reduction metasurface (RRM) has been drawing much attention due to its potential application in stealth technology. However, the traditional RRM is designed mainly based on trial-and-error approaches, which is time-consuming and leads to inefficiency. Here, we report the design of a broadband RRM based on deep-learning methodology. On one hand, we construct a forward prediction network that can forecast the polarization conversion ratio (PCR) of the metasurface in a millisecond, demonstrating a higher efficiency than traditional simulation tools. On the other hand, we construct an inverse network to immediately derive the structure parameters once a target PCR spectrum is given. Thus, an intelligent design methodology of broadband polarization converters has been established. When the polarization conversion units are arranged in chessboard layout with 0/1 form, a broadband RRM is achieved. The experimental results show that the relative bandwidth reaches 116% (reflection<-10 dB) and 107.4% (reflection<-15 dB), which demonstrates a great advantage in bandwidth compared with the previous designs.

4.
Opt Express ; 31(9): 13875-13887, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157263

RESUMO

Self-assembled photonic structures have greatly expanded the paradigm of optical materials due to their ease of access, the richness of results offered and the strong interaction with light. Among them, photonic heterostructure shows unprecedent advances in exploring novel optical responses that only can be realized by interfaces or multiple components. In this work, we realize visible and infrared dual-band anti-counterfeiting using metamaterial (MM) - photonic crystal (PhC) heterostructures for the first time. Sedimentation of TiO2 nanoparticles in horizontal mode and polystyrene (PS) microspheres in vertical mode self-assembles a van der Waals interface, connecting TiO2 MM to PS PhC. Difference of characteristic length scales between two components support photonic bandgap engineering in the visible band, and creates a concrete interface at mid-infrared to prevent interference. Consequently, the encoded TiO2 MM is hidden by structurally colored PS PhC and visualized either by adding refractive index matching liquid or by thermal imaging. The well-defined compatibility of optical modes and facility in interface treatments further paves the way for multifunctional photonic heterostructures.

5.
Chemistry ; 29(21): e202203478, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36694013

RESUMO

Self-healable and stretchable elastomeric material is essential for the development of flexible electronics devices to ensure their stable performance. In this study, a strain sensor (PIH2 T1 -tri/CNT-3) composed of self-repairable crosslinked elastomer substrate (PIH2 T1 -tri, containing multiple reversible repairing sites such as disulfide, imine, and hydrogen bonds) and conductive layer (carbon nanotube, CNT) was prepared. The PIH2 T1 -tri elastomer had excellent self-healing ability (healing efficiency=91 %). It exhibited good mechanical integrity in terms of elongation at break (672 %), tensile strength (1.41 MPa). The Young's modulus (0.39 MPa) was close to that of human skin. The PIH2 T1 -tri/CNT-3 sensor also demonstrated an effective self-healing function for electrical conduction and sensing property. Meanwhile, it had high sensitivity (gauge factor (GF)=24.1), short response time (120 ms), and long-term durability (4000 cycles). This study offers a novel self-healable elastomer platform with carbon based conductive components to develop flexible strain sensors towards high performance soft electronics.

6.
Chemistry ; 29(57): e202301800, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37496278

RESUMO

Solid-state ionic conductive elastomers (ICEs) can fundamentally overcome the disadvantages of hydrogels and ionogels (their liquid components tend to leak or evaporate), and are considered to be ideal materials for flexible ionic sensors. In this study, a liquid-free ionic polyurethane (PU) type conductive elastomer (ICE-2) was synthesized and studied. The PU type matrix with microphase separation endowed ICE-2 with excellent mechanical versatility. The disulfide bond exchange reaction in the hard phase and intermolecular hydrogen bonds contributed to damage repairing ability. ICE-2 exhibited good ionic conductivity (2.86×10-6  S/cm), high transparency (average transmittance >89 %, 400~800 nm), excellent mechanical properties (tensile strength of 3.06 MPa, elongation at break of 1760 %, and fracture energy of 14.98 kJ/m2 ), appreciable self-healing ability (healing efficiency >90 %), satisfactory environmental stability, and outstanding recyclability. The sensor constructed by ICE-2 could not only realize the perception of temperature changes, but also accurately and sensitively detect various human activities, including joint movements and micro-expression changes. This study provides a simple and effective strategy for the development of flexible and soft ionic conductors for sensors and human-machine interfaces.

7.
Langmuir ; 39(36): 12878-12889, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646575

RESUMO

Corrosion resistant, durable, and lightweight flexible strain sensor with multiple functionalities is an urgent demand for modern flexible wearable devices. However, currently developed wearable devices are still limited by poor environmental adaptability and functional singleness. In this work, a conductive fabric with multifunctionality in addition to sensing was successfully prepared by assembling zero dimensional silver nanoparticles (AgNPs) and one-dimensional carbon nanotubes (CNTs) layer by layer on the surface of the elastic polypropylene nonwoven fabric (named PACS fabric). Polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS) added as binder materials favored strong interaction between conductive fillers and the fabric. Benefiting from the synergistic interaction among the conductive fillers with different dimensions and the fabric, the strain sensor based on the conductive fabric showed high sensitivity (GF up to 8064), wide detection range (0-200%), and excellent stability and durability (more than 10000 stretch-release cycles). Besides, the prepared conductive fabric showed superhydrophobicity (water contact angle = 154°) with excellent durability. This ensured the performance stability of the fabric sensor in harsh environments. At the same time, the fabric also showed excellent photothermal conversion performance (90 °C at a power density of 0.2 W/cm2 within 20 s). The PACS fabric strain sensor proved excellent performance and environmental adaptability, revealing great potential to be applied in human motion monitoring, self-cleaning, biomedicine, and other fields.

8.
Nano Lett ; 22(7): 2948-2955, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289627

RESUMO

The emergence of organic-inorganic perovskite has provided great flexibility for creating optoelectronic devices with unprecedented performance or unique functionality. However, the perovskite films explored so far have been difficult to be patterned to arrays owing to their poor solvent and moisture stability, which usually lead to serious structural damage of perovskites. The successful preparation of perovskite microarrays with uniform shape and size is more challenging. Here we report a straightforward approach to realize single-crystalline perovskite arrays through a relatively simple pattern-selective molecular epitaxial growth. This approach is applied to create diverse shaped perovskite arrays, such as hexagon, triangle, circle, square, and rectangle. A vertically aligned perovskite photodetector displays both an ultrasensitive and ultrafast photoresponse arising from the reduction in carrier diffusion paths and the high optical absorption. This work demonstrates a general approach to creating perovskite arrays with uniform shape, size, and morphology and provides a rich platform for producing high-performance photodetectors and photovoltage devices.

9.
Nano Lett ; 22(1): 203-210, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928607

RESUMO

The burgeoning field of twistronics, which concerns how changing the relative twist angles between two materials creates new optoelectronic properties, offers a novel platform for studying twist-angle dependent excitonic physics. Herein, by surveying a range of hexagonal phase transition metal dichalcogenides (TMD) twisted homobilayers, we find that 21.8 ± 1.0°-twisted (7a×7a) and 27.8 ± 1.0°-twisted (13a×13a) bilayers account for nearly 20% of the total population of twisted bilayers in solution-phase restacked bilayers and can be found also in chemical vapor deposition (CVD) samples. Examining the optical properties associated with these twisted angles, we found that 21.8 ± 1.0° twisted MoS2 bilayers exhibit an intense moiré exciton peak in the photoluminescence (PL) spectra, originating from the refolded Brillouin zones. Our work suggests that commensurately twisted TMD homobilayers with short commensurate wavelengths can have interesting optoelectronic properties that are different from the small twist angle counterparts.

10.
Opt Express ; 30(15): 26306-26314, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236825

RESUMO

Chiral plasmonic nanostructures can generate large superchiral near fields owing to their intrinsic chirality, leveraging applications for molecule chirality sensing. However, the large structural chirality of chiral nanostructures poses the risk of overshadowing molecular chiral signals, hampering the practical application of chiral nanostructures. Herein, we propose an achiral nanorod that shows no structural chirality and presents strong superchiral near-fields with linearly polarized incidence. The mechanism of the strong superchiral near-field originates from the coupling between the evanescent fields of the localized surface plasmon resonance and incident light. The enhanced near-field optical chirality at the corners of the nanorods reached 25 at a wavelength of 790 nm. Meanwhile, the sign of optical chirality can be tuned by the polarization of the incident light, which provides a convenient way to control the handedness of the light. Furthermore, the enantiomers of D- and L-phenylalanine molecules were experimentally characterized using an achiral platform, which demonstrated a promising nanophotonic platform for chiral biomedical sensing.

11.
Chemistry ; 28(72): e202202717, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36149011

RESUMO

Developing high-performance functional polymer-based electrolytes is important for realizing next generation safe lithium metal batteries. In this study, a new type of quasi-solid polymer network electrolyte (SIPH-x-y%) was prepared by combining synthesized polymer network (SIPH) containing urethane bond linked ionic liquids (ILs), polyethylene glycol (PEG), and disulfide bond moieties, lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), and glyme type additive. It was found that SIPH-20-40% was mechanically flexible, self-healable, and showed high ionic conductivity of 2.67×10-4  S cm-1 . Also, SIPH-20-40% possesses a high lithium ion transference number of 0.43 and good electrochemical stability. These properties enabled the SIPH-20-40% electrolyte membrane to support Li/Li symmetrical cell to cycle stably during long term Li plating and stripping. The Li/SIPH-20-40%/LFP showed high delivered specific capacity and good stability (166.1 mAh g-1 after 106 cycles at 0.2 C). Such glyme doped polymer network electrolyte provides new experimental findings for developing polymer-based electrolyte with excellent mechanical integrity and battery related properties.

12.
Opt Express ; 29(6): 8872-8879, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820328

RESUMO

We propose a radar-infrared bi-stealth rasorber that not only provides broad microwave absorptivity and low infrared emissivity but also possesses a microwave transmission window at low frequency. It is composed of three functional layers, which are carefully designed to independently control the infrared emission, microwave absorption, and transmission, respectively. The structure exhibits broadband (8.1-19.3 GHz) and high-efficiency (>90%) absorption. A transmission window appears at low frequency with a transmission peak of 80% at 2.68 GHz. The thermal emissivity of the structure is about 0.27 in the atmosphere window, which is close to that of metal. Moreover, the total thickness of the proposed structure is only 3.713 mm. The low-infrared-emissivity, high-microwave-absorption and frequency-selective-transmission properties promise it will find potential applications in various stealth fields.

13.
Nano Lett ; 20(7): 5330-5338, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32501013

RESUMO

Single-phonon modes offer potential applications in quantum phonon optics, but the phonon density of states of most materials consist of mixed contributions from coupled phonons. Here, using theoretical calculations and magneto-Raman measurements, we report two single-phonon vibration modes originating from the breathing and opposite out-of-plane vibrations of InSe layers. These single-phonon vibrations exhibit an anticorrelated scattering rotations of the polarization axis under an applied vertical magnetic field; such an anomalous magneto-optical behavior is due to the reverse bond polarizations of two quantum atomic vibrations, which induce different symmetry for the corresponding Raman selection rules. A 180° (+90° and -90°) integrated scattering rotation angle of two single-phonon modes was achieved when the magnetic field was swept from 0 to 6 T. This work demonstrates new ways to manipulate the magneto-optic effect through phonon polarity-based symmetry control and opens avenues for exploring single-phonon-vibration-based nanomechanical oscillators and magneto-phonon-coupled physics.

14.
Nano Lett ; 20(3): 2129-2136, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32078769

RESUMO

Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.

15.
Phys Rev Lett ; 125(26): 263603, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449768

RESUMO

Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here, we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include tilted dispersion, chiral-like robust propagation in samples with certain shapes, and 100% scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.

16.
Opt Express ; 27(20): 28618-28628, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684610

RESUMO

Transparent conductive oxide (TCO) films showing epsilon near zero (ENZ) properties have attracted great research interest due to their unique property of electrically tunable permittivity. In this work, we report the effect of oxygen stoichiometry on the structure, optical and ENZ properties of indium tin oxide (ITO) films fabricated under different oxygen partial pressures. By using spectroscopic ellipsometry (SE) with fast data acquisition capabilities, we observed modulation of the material index and ENZ wavelength under electrostatic gating. Using a two-layer model based on Thomas-Fermi screening model and the Drude model, the optical constants and Drude parameters of the ITO thin films are determined during the gating process. The maximum carrier modulation amplitude ΔN of the accumulation layer is found to vary significantly depending on the oxygen stoichiometry. Under an electric field gate bias of 2.5 MV/cm, the largest ENZ wavelength modulation up to 27.9 nm at around 1550 nm is observed in ITO thin films deposited with oxygen partial pressure of P O 2 =10 Pa. Our work provides insights to the optical properties of ITO during electrostatic gating process for electro-optic modulators (EOMs) applications.

17.
Opt Express ; 27(8): 11537-11546, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052997

RESUMO

Atmospheric windows play an important role in the field of infrared detection and radiative cooling. In this paper, the development of VO2-based metamaterial emitter brings broadband thermal-switching light to mid-infrared atmospheric windows. At room temperature, the emitter radiates light in both 3-5µm and 8-14µm atmospheric windows. At high temperature, the radiation peaks move out of the atmospheric windows and result a strong radiation at 5-8µm. The underlying mechanism relies on the relationship between VO2 metal-insulator transition (MIT) and resonant absorption modes coupling. Corresponding thermal imaging experiment exhibits two distinct phenomena. One is the observation of unchanged thermal radiation around MIT temperature. The other phenomenon regards the concealment of the emitter from Al background at specific temperatures. These two phenomena show potential application in infrared anti-detection.

18.
Phys Chem Chem Phys ; 19(5): 3486-3497, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27924320

RESUMO

Owing to their prominent stability and CMOS compatibility, HfO2-based ferroelectric films have attracted great attention as promising candidates for ferroelectric random-access memory applications. A major reliability issue for HfO2 based ferroelectric devices is fatigue. So far, there have been a few studies on the fatigue mechanism of this material. Here, we report a systematic study of the fatigue mechanism of yttrium-doped hafnium oxide (HYO) ferroelectric thin films deposited by pulsed laser deposition. The influence of pulse width, pulse amplitude and temperature on the fatigue behavior of HYO during field cycling is studied. The temperature dependent conduction mechanism is characterized after different fatigue cycles. Domain wall pinning caused by carrier injection at shallow defect centers is found to be the major fatigue mechanism of this material. The fatigued device can fully recover to the fatigue-free state after being heated at 90 °C for 30 min, confirming the shallow trap characteristic of the domain wall pinning defects.

19.
Opt Express ; 24(12): 12856-67, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410305

RESUMO

We report the design of a waveguide optical isolator based on multimode interferometer (MMI) structure using silicon on insulator (SOI) and deposited magneto-optical (MO) thin films. The optical isolator is based on a vertical 1 × 2 SOI MMI utilizing the nonreciprocal phase shift (NRPS) difference of different TM modes of the MO garnet thin film/SOI waveguide. By constructing a silicon/MO thin film/silicon structure, we demonstrate that the NRPS of the fundamental and first order TM modes can show opposite signs for certain device dimensions, therefore significantly reduce the device length. For a 310.42 µm long device, 20 dB isolation bandwidth larger than 1.6 nm with total insertion loss of 0.817 dB is achieved at 1550 nm wavelength. The fabrication tolerances and materials losses are also discussed to satisfy the state-of-the-art fabrication technology and material properties.

20.
Opt Express ; 22(22): 27042-55, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401854

RESUMO

We report a theoretical study of the enhanced Goos-Hänchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y(3)Fe(5)O(12) (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as the MOGH (magneto-optical Goos-Hänchen) effect. The applied magnetic field direction is found to cause MOGH effect for light with different polarizations. As example systems, enhanced GH shift and MOGH effect is observed in both prism/Air/CeYIG/SiO(2) and prism/Au/CeYIG/SiO(2) structures, by applying opposite magnetic field across the CeYIG layer in a transverse magneto-optical Kerr effect (TMOKE) configuration. The GH and MOGH effect as a function of layer thicknesses, material refractive indices and magneto-optical properties are systematically simulated and discussed. It is observed that the coupling layer and MO layer thickness plays an important role of controlling the MOGH effect in the prism/Au/CeYIG/SiO(2) plasmonic waveguide structure. The MOGH effect shows high sensitivity to applied magnetic field and index variations, making it promising for applications such as optical switches, modulators, and chemical or biomedical index sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA