Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(2): e29466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344929

RESUMO

Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-ß. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.


Assuntos
Coinfecção , Infecções por HIV , Micoses , Humanos , Receptor 2 Toll-Like/genética , RNA Helicases
2.
Biosens Bioelectron ; 251: 116136, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377637

RESUMO

Nutrition assessment is crucial for dietary guidance and prevention of malnutrition. Recent endeavors in wearable biochemical sensors have enabled real-time, in situ analysis of nutrients in sweat. However, the monitoring of riboflavin, an indispensable vitamin B involved in energy metabolism, remains challenging due to its trace level and variations in the sweat matrix. Herein, we report a wireless, battery-free, and flexible wearable biosensing system for the in situ monitoring of sweat riboflavin. Highly sensitive and selective electrochemical voltammetric detection is realized based on the synergistic effect of electrodeposited reduced graphene oxide (rGO) and platinum nanoparticles (PtNPs) with a low detection limit of 1.2 nM. The fully integrated system is capable of sweat sampling with the microfluidic patch, real-time riboflavin analysis and pH calibration with the flexible electrode array, as well as wirelessly simultaneous near field communication (NFC) energy harvesting and data transmission with the flexible circuit and a smartphone. On-body human sweat analysis demonstrates high accuracy cross-validated with gold-standard measurements, and reveals a strong correlation between sweat and urine riboflavin levels. The proposed wearable platform opens up attractive possibilities for noninvasive nutrient tracking, providing strong potential for personalized dietary guidance towards precision nutrition.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Dispositivos Eletrônicos Vestíveis , Humanos , Suor , Platina , Riboflavina
3.
Lab Chip ; 23(15): 3424-3432, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37404057

RESUMO

Creatinine and albumin are crucial biomarkers for health monitoring and their ratio in urine is an effective approach for albuminuria assessment. Herein, to address the challenges of point-of-care and efficient analysis of the biomarkers simultaneously, we developed a fully integrated handheld smartphone-based photoelectrochemical biosensing system. A miniaturized printed circuit board included a potentiostat for photocurrent measurements and single-wavelength light-emitting diodes (LEDs) for photo-excitation, which was controlled with a Bluetooth-enabled smartphone. Graphitic carbon nitride (g-C3N4)/chitosan nanocomposites were modified on a transparent indium tin oxide (ITO) electrode as photoactive materials. Creatinine was detected through chelate formation with copper ion probes, while albumin was recognized specifically by an antigen-antibody reaction based on immunoassay. The biosensing system demonstrated good linearity and high sensitivity, with detection ranges of 100 µg mL-1 to 1500 µg mL-1 for creatinine, and 9.9 µg mL-1 to 500 µg mL-1 for albumin. Spiked artificial urine samples with different concentrations were tested to confirm the practical validity of the biosensing system, where an acceptable recovery rate ranged from 98.7% to 105.3%. This portable photoelectrochemical biosensing platform provides a convenient and cost-effective method for biofluid analysis, which has an extensive prospect in point-of-care testing (POCT) for mobile health.


Assuntos
Técnicas Biossensoriais , Smartphone , Técnicas Eletroquímicas/métodos , Creatinina , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores , Albuminas , Técnicas Biossensoriais/métodos , Limite de Detecção
4.
Biosens Bioelectron ; 234: 115363, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146537

RESUMO

As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.


Assuntos
Técnicas Biossensoriais , Clozapina , Esquizofrenia , Animais , Ratos , Clozapina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Saliva/metabolismo , Conduta do Tratamento Medicamentoso , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA