RESUMO
ABSTRACT: Objective To detect the uncontrolled new psychoactive tryptamines involved in drug-related cases with high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Methods White and brown powder obtained in actual cases were extracted and analyzed by gas chromatography-quadrupole time-of-flight mass spectrometry ï¼GC-QTOF-MSï¼, ultra-high performance liquid chromatography-linear ion trap quadrupole-orbitrap mass spectrometry ï¼UPLC-LTQ-Orbitrap MSï¼ and 1H-nuclear magnetic resonance spectroscopy ï¼1H-NMRï¼. Results After detection by GC-QTOF-MS, the components of white powder showed main characteristic fragment ion peaks at m/z 218.141 0 ï¼molecular ion peakï¼, 72.080 6 ï¼base peakï¼, etc. After detection by UPLC-LTQ-Orbitrap MS, its protonated molecular ion was m/z 219.149 4. The main ions in the secondary mass spectrum under the collision-induced dissociation ï¼CIDï¼ mode were m/z 160.076 3 and 72.080 8. After detection by GC-QTOF-MS, the components of brown powder showed main characteristic fragment ion peaks at m/z 246.135 7 ï¼molecular ion peakï¼, 58.065 1 ï¼base peakï¼, etc. After detection by UPLC-LTQ-Orbitrap MS, its protonated molecular ion was m/z 247.145 0. The main ions in the secondary mass spectrum under CID mode were m/z 202.087 1, 160.076 3 and 134.060 5. NIST 17 library retrieval and 1H-NMR confirmed that the white powder and brown powder contained new psychoactive tryptamines 4-OH-MET and 4-AcO-DMT, respectively. Conclusion GC-QTOF-MS, UPLC-LTQ-Orbitrap MS and 1H-NMR can be used together to identify unknown new psychoactive substances.
Assuntos
Triptaminas , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectrometria de MassasRESUMO
ABSTRACT: Objective To establish a method for determination of the azide ions in blood by gas chromatography-mass spectrometry ï¼GC-MSï¼ following pentafluorobenzyl derivatization. Methods A blood sample of 0.2 mL was placed into a 10 mL glass test tube, and the internal standard sodium cyanide, derivatization reagent pentafluorobenzyl bromide and catalyst tetradecyl benzyl dimethyl ammonium chloride were added in turn. After vortex mixing, the mixture was heated with low-power microwave for 3 min. After centrifugation, the organic phase was taken for GC-MS analysis. Results The azide ions in blood had a good linear relationship in the mass concentration range of 0.5 to 20 µg/mL. The lowest detection limit was 0.25 µg/mL and the relative recovery was 91.36%-94.58%. The method was successfully applied to a case of death from sodium azide poisoning. The mass concentration of azide ions in the blood of the dead was 11.11 µg/mL. Conclusion The method developed in this paper has strong specificity and is easy to operate, which is suitable for the rapid detection of azide ions in blood.
Assuntos
Azidas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , ÍonsRESUMO
OBJECTIVE: To examine the effect of the alcoholic extract of lotus leaves (AELL) on antiretroviral treatment-induced dyslipidaemia in a rat model. METHODS: Lotus leaves were extracted by 95% ethanol. Seventy male Sprague-Dawley rats were given lopinavir/ritonavir for six weeks. At week 0 and 6, sera were collected for measurement of total cholesterol (TC) and triglyceride (TG). Rats meeting the criteria for dyslipidaemia were assigned to four groups and received once daily for another four weeks lopinavir/ritonavir (group A), lopinavir/ritonavir plus 0.52 g/kg AELL (group B), lopinavir/ritonavir plus 0.26 g/kg AELL (group C), or lopinavir/ritonavir plus 0.13 g/kg AELL (group D), respectively. At weeks 8 and 10, blood samples were collected again for measurement of TC or TG. RESULTS: Both TC and TG increased over time in group A during the observation period (weeks 6 to 10), however, TC and TG decreased in group B, and TG declined in group C. Neither TC nor TG could be reduced to a level near baseline. CONCLUSION: Alcoholic extract of lotus leaves may have the potential to treat dyslipidaemia related to highly active antiretroviral therapy, but may not be potent enough to reduce TC or TG concentrations to goal levels when used alone.
RESUMO
A novel biological method for the synthesis of platinum nanoparticles using the horse spleen apoferritin (HSAF) is reported. When HSAF was incubated with K(2)PtCl(6) at 23 degrees C) for 48 h followed by subsequent reduction with NaBH(4) it resulted in the formation of spherical platinum nanoparticles, size 4.7 +/- 0.9 nm, with narrow particle size distribution confirmed by transmission electron microscopy and energy dispersive X-ray analysis. As the initial platinum concentration increased through 0.155, 0.31, 0.465 to 0.62 mM the efficiency of its removal from solution by the apoferritin was 99, 99, 84 and 71% respectively. The maximum uptake of platinum salt per mM apoferritin was estimated at 12.7 mmol l(-1) h(-1). These results clearly indicate that the HSAF protein cage can successfully serve as a suitable size-constrained support matrix for the biological synthesis of platinum nanoparticles.
Assuntos
Apoferritinas/metabolismo , Nanopartículas/química , Platina/metabolismo , Animais , Cavalos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Oxirredução , Baço/enzimologiaRESUMO
Graphitization occurs during the long-term service of a diamond-like carbon (DLC) modified artificial joint. Then, DLC wear debris, which are carbon particles with different sp2/sp3 ratios and sizes ranging from the nano- to micro-meter scale produced. In this paper, to promote the application of DLC coating for artificial joint modification, the cytotoxicity of DLC debris (nano-carbon particles, NCs) with different sp2/sp3 ratios was studied. The microstructure and physical characteristics of NCs with different sp2/sp3 ratios were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). Meanwhile, osteoblasts and macrophages were applied to characterize the cytotoxicity of the NCs. In vitro cytotoxicity assay results indicated that cells incubated with NCs of different sp2/sp3 ratios had greater osteogenic capacity, and these particles caused a weaker immune response in comparison with CoCrMo particles. Taken together, the results indicated that NCs with different sp2/sp3 ratios presented a good cytocompatibility than CoCrMo particles. But no significant differences were observed among NCs with different sp2/sp3 ratios. The better cytocompatibility of NCs is mainly attributable to their surface charge.
Assuntos
Carbono/toxicidade , Nanoestruturas/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Nanoestruturas/química , Osteoblastos/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Patients with DLC (diamond like carbon)-coated artificial joints may be exposed to a wide size range of DLC wear debris (DW). In this study, the cytotoxicity of DW of different size ranges (0-0.22, 0.22-0.65, 0.65-1.0, and 1.0-5.0 µm) was evaluated. The microstructure and physical characteristics of DW were investigated by Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM), and dynamic light scattering (DLS). Macrophages, osteoblasts, and fibroblasts were incubated with DW of different size ranges respectively followed by cytotoxicity evaluations of inflammatory cytokines, alkaline phosphatase (ALP) assays, and related signal protein expression analysis. The results showed that, except for the size range of 0-0.22 µm, DW cytotoxicity showed a size-dependent (0.22-5.0 µm) decrease with increasing size. Within the range of 0.22-5.0 µm, DW of larger size resulted in lessened inflammatory response and enhanced osteoblastogenesis and fibrogenesis, with increased viability of cells (macrophages, osteoblasts, and fibroblasts), better morphology, less release of pro-inflammatory factors and more release of anti-inflammatory factors. The results demonstrated that DW sizes below 0.22 µm had less negative effects on cell adhesion and growth because of the BSA (bovine serum albumin) encapsulation effect. These findings provide valuable knowledge about the comprehensive mechanism of promotion of inflammatory response and inhibition of osteoblastogenesis and fibrogenesis induced by DW. In conclusion, an effective system of biocompatibility evaluation for different sizes of DW was derived.
RESUMO
While a diamond-like carbon (DLC)-coated joint prosthesis represents the implant of choice for total hip replacement in patients, it also leads to concern due to the cytotoxicity of wear debris in the form of graphite nanoparticles (GNs), ultimately limiting its clinical use. In this study, the cytotoxicity of various GN doses was evaluated. Mouse macrophages and osteoblasts were incubated with GNs (<30 nm diameter), followed by evaluation of cytotoxicity by means of assessing inflammatory cytokines, results of alkaline phosphatase assays, and related signaling protein expression. Cytotoxicity evaluation showed that cell viability decreased in a dose-dependent manner (10-100 µg ml-1), and steeply declined at GNs concentrations greater than 30 µg ml-1. Noticeable cytotoxicity was observed as the GN dose exceeded this threshold due to upregulated receptor of activator of nuclear factor kB-ligand expression and downregulated osteoprotegerin expression. Meanwhile, activated macrophage morphology was observed as a result of the intense inflammatory response caused by the high doses of GNs (>30 µg ml-1), as observed by the increased release of TNF-α and IL-6. The results suggest that GNs had a significant dose-dependent cytotoxicity in vitro, with a lethal dose of 30 µg ml-1 leading to dramatic increases in cytotoxicity. Our GN cytotoxicity evaluation indicates a safe level for wear debris-related arthropathy and could propel the clinical application of DLC-coated total hip prostheses.
Assuntos
Materiais Revestidos Biocompatíveis/toxicidade , Grafite/toxicidade , Prótese Articular , Nanopartículas/toxicidade , Animais , Carbono/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/administração & dosagem , Materiais Revestidos Biocompatíveis/química , Diamante/química , Relação Dose-Resposta a Droga , Grafite/administração & dosagem , Grafite/química , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Teste de Materiais , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Falha de Prótese , Células RAW 264.7RESUMO
Diamond-like carbon (DLC) films are potential candidates for artificial joint surface modification in biomedical applications, and the influence of the structural features of DLC surfaces on cell functions has attracted attention in recent decades. Here, the biocompatibility of DLC films with different structures was investigated using macrophages, osteoblasts and fibroblasts. The results showed that DLC films with a low ratio of sp(2)/sp(3), which tend to have a structure similar to that of diamond, led to less inflammatory, excellent osteogenic and fibroblastic reactions, with higher cell viability, better morphology, lower release of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6), and higher release of IL-10 (interleukin-10). The results also demonstrated that the high-density diamond structure (low ratio of sp(2)/sp(3)) of DLC films is beneficial for cell adhesion and growth because of better protein adsorption without electrostatic repulsion. These findings provide valuable insights into the mechanisms underlying inhibition of an inflammatory response and the promotion of osteoblastogenesis and fibrous propagation, and effectively build a system for evaluating the biocompatibility of DLC films.
Assuntos
Tecnologia Biomédica/métodos , Diamante/química , Diamante/farmacologia , Adsorção , Animais , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Soroalbumina Bovina/química , Análise Espectral RamanRESUMO
AnnongS-1, a thermo-sensitive genic male-sterile (TGMS) rice line, has a new TGMS gene. Genetic analysis indicated that the sterility of AnnongS-1 was controlled by a single resessive gene named tms5. In our previous studies based on an F(2) population from the cross between AnnongS-1 and Nanjing11, tms5 was mapped on chromosome 2. Recently, a RIL (recombinant inbred line) population from the same cross was developed and used for the fine mapping of the tms5 gene. Molecular marker techniques combined with BSA (bulked segregant analysis) were used. As a result, two AFLP markers (AF10, AF8), one RAPD marker (RA4), one STS marker (C365-1), one CAPs marker (G227-1) and four SSR markers (RM279, RM492, RM327, RM324) were found to be closely linked to tms5 gene. The DNA sequences of the RFLP marker of C365 and G227 were found in GenBank, and on the basis of these sequences, many primers were designed to amplify the two parents and their RIL population plants. Finally, the tms5 gene was mapped between STS marker C365-1 and CAPs marker G227-1 at a distance of 1.04 cM from C365-1 and 2.08 cM from G227-1.