Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 5: 16356, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26559888

RESUMO

This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and »MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting.


Assuntos
Germinação , Orchidaceae/embriologia , Orchidaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Meios de Cultura , Fenótipo
2.
PLoS One ; 8(8): e73886, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023693

RESUMO

Hybrid weakness (HW) is an important postzygotic isolation which occurs in both intra- and inter-specific crosses. In this study, we described a novel low temperature-dependent intrasubspecific hybrid weakness in the F1 plants derived from the cross between two indica rice varieties Taifeng A and V1134. HW plants showed growth retardation, reduced panicle number and pale green leaves with chlorotic spots. Cytological assay showed that there were reduced cell numbers, larger intercellular spaces, thicker cell walls, and abnormal development of chloroplast and mitochondria in the mature leaves from HW F1 plants in comparison with that from both of the parental lines. Genetic analysis revealed that HW was controlled by two complementary dominant genes Hw3 from V1134 and Hw4 from Taifeng A. Hw3 was mapped in a 136 kb interval between the markers Indel1118 and Indel1117 on chromosome 11, and Hw4 was mapped in the region of about 15 cM between RM182 and RM505 on chromosome 7, respectively. RT-PCR analysis revealed that only LOC_Os11g44310, encoding a putative calmodulin-binding protein (OsCaMBP), differentially expressed among Taifeng A, V1134 and their HW F1. No recombinant was detected using the markers designed based on the sequence of LOC_Os11g44310 in the BC1F2 (Taifeng A//Taifeng A/V1134) population. Hence, LOC_Os11g44310 was probably the candidate gene of Hw3. Gene amplification suggested that LOC_Os11g44310 was present in V1134 and absent in Taifeng A. BLAST search revealed that LOC_Os11g44310 had one copy in the japonica genomic sequence of Nipponbare, and no homologous sequence in the indica reference sequence of 9311. Our results indicate that Hw3 is a novel gene for inducing hybrid weakness in rice.


Assuntos
Temperatura Baixa , Hibridização Genética , Oryza/citologia , Oryza/genética , Sequência de Bases , Clorofila/metabolismo , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Ligação Genética , Dados de Sequência Molecular , Fenótipo , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/ultraestrutura , Plântula/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
3.
PLoS One ; 6(11): e27238, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125608

RESUMO

Phenotypic plasticity is common in many taxa, and it may increase an organism's fitness in heterogeneous environments. However, in some cases, the frequency of environmental changes can be faster than the ability of the individual to produce new adaptive phenotypes. The importance of such a time delay in terms of individual fitness and species adaptability has not been well studied. Here, we studied gender plasticity of Alternanthera philoxeroides to address this issue through a reciprocal transplant experiment. We observed that the genders of A. philoxeroides were plastic and reversible between monoclinous and pistillody depending on habitats, the offspring maintained the maternal genders in the first year but changed from year 2 to 5, and there was a cubic relationship between the rate of population gender changes and environmental variations. This relationship indicates that the species must overcome a threshold of environmental variations to switch its developmental path ways between the two genders. This threshold and the maternal gender stability cause a significant delay of gender changes in new environments. At the same time, they result in and maintain the two distinct habitat dependent gender phenotypes. We also observed that there was a significant and adaptive life-history differentiation between monoclinous and pistillody individuals and the gender phenotypes were developmentally linked with the life-history traits. Therefore, the gender phenotypes are adaptive. Low seed production, seed germination failure and matching phenotypes to habitats by gender plasticity indicate that the adaptive phenotypic diversity in A. philoxeroides may not be the result of ecological selection, but of gender plasticity. The delay of the adaptive gender phenotype realization in changing environments can maintain the differentiation between gender systems and their associated life-history traits, which may be an important component in evolution of novel traits and taxonomic diversity.


Assuntos
Amaranthaceae/genética , Meio Ambiente , Flores/genética , Variação Genética/genética , Adaptação Fisiológica/genética , Amaranthaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Modelos Logísticos , Fenótipo , Análise de Componente Principal , Reprodução Assexuada/genética , Seleção Genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA