Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
J Org Chem ; 89(6): 4098-4112, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421813

RESUMO

A method for the selective construction of S-N/C(sp2)-S bonds using N-substituted O-thiocarbamates and indoles as substrates is reported. This protocol features good atom utilization, mild conditions, short reaction time, and wide substrate scope, which can provide a convenient path for the functionalization of indoles. In addition, the reaction could be scaled up on gram scale, showing potential application value in industry synthesis.

2.
J Oral Pathol Med ; 53(2): 114-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234119

RESUMO

BACKGROUND: Ubiquitination, small ubiquitin-related modifiers, and NEDDylation are now found to function in cancer biology; however, its role in the oral cancer patients remains unclear. METHODS: A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of ubiquitin and ubiquitin-like (UB/UBL) genes. A UB/UBL-related risk score was developed via correlation analyses, univariate Cox regression, and multivariate Cox regression. Nomogram analysis evaluates the model's prediction performance. The drug sensitivity analysis, immune profiles of UB/UBL-classified oral squamous cell carcinoma (OSCC) patients, and their related function pathway were investigated, and the role of UB/UBL-related genes in drug therapy was analyzed. RESULTS: A total of six prognostic UB/UBL-related genes were obtained. PSMD3, PCGF2, and H2BC10 were significantly downregulated in OSCC tissue and associated with longer survival time. OSCC patients in the high-risk group showed a significantly lower overall survival and enriched in cancer-related pathways. The prognostic potential of genes associated with UB/UBL was discovered, and patients with high-risk scores showed an increase of protumor immune infiltrates and a high expression of immune checkpoints. Moreover, the area under the curve of the annual survival rate was 0.616, 0.671, and 0.673, respectively. Besides, patients in the high-risk group are more sensitive to docetaxel, doxorubicin, and methotrexate therapy. CONCLUSIONS: We construct a prognosis model for OSCC patients with UB/UBL-related genes and try to find a new approach to treating oral cancer patients. The UB/UBL-related signature is helpful in developing new tumor markers, prognostic prediction, and in guiding treatment for OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Prognóstico , Sumoilação , Neoplasias Bucais/genética , Ubiquitinação , Ubiquitina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
Environ Res ; 242: 117775, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029815

RESUMO

The development of cost-efficient biochar adsorbent with a simple preparation method is essential to constructing efficient wastewater treatment system. Here, a low-cost waste carton biochar (WCB) prepared by a simple two-step carbonization was applied in efficiently removing Rhodamine B (RhB) in aqueous environment. The maximum ability of WCB for RhB adsorption was 222 mg/g, 6 and 10 times higher than both of rice straw biochar (RSB) and broadbean shell biochar (BSB), respectively. It was mainly ascribed to the mesopore structure (3.0-20.4 nm) of WCB possessing more spatial sites compared to RSB (2.2 nm) and BSB (2.4 nm) for RhB (1.4 nm✕1.1 nm✕0.6 nm) adsorption. Furthermore, external mass transfer (EMT) controlled mass transfer resistance (MTR) of the RhB sorption process by WCB which was fitted with the Langmuir model well. Meanwhile, the adsorption process was dominated by physisorption through van der Waals forces and π-π interactions. A mixture of three dyes in river water was well removed by using WCB. This work provides a straightforward method of preparing mesoporous biochar derived from waste carton with high-adsorption capacity for dye wastewater treatment.


Assuntos
Carvão Vegetal , Águas Residuárias , Poluentes Químicos da Água , Corantes/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Poluentes Químicos da Água/análise , Cinética
4.
Pestic Biochem Physiol ; 203: 106009, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084775

RESUMO

Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.


Assuntos
Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Inseticidas , Nitrilas , Piretrinas , Spodoptera , Animais , Piretrinas/farmacologia , Piretrinas/toxicidade , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Nitrilas/toxicidade , Nitrilas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/farmacologia , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Inativação Metabólica , Larva/efeitos dos fármacos , Larva/genética
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 1026-1033, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39170022

RESUMO

Objective: To analyze the radiomic and clinical features extracted from 2D ultrasound images of thyroid tumors in patients with Hashimoto's thyroiditis (HT) combined with papillary thyroid carcinoma (PTC) using machine learning (ML) models, and to explore the diagnostic performance of the method in making preoperative noninvasive identification of cervical lymph node metastasis (LNM). Methods: A total of 528 patients with HT combined with PTC were enrolled and divided into two groups based on their pathological results of the presence or absence of LNM. The groups were subsequently designated the With LNM Group and the Without LNM Group. Three ultrasound doctors independently delineated the regions of interest and extracted radiomic features. Two modes, radiomic features and radiomics-clinical features, were used to construct random forest (RF), support vector machine (SVM), LightGBM, K-nearest neighbor (KNN), and XGBoost models. The performance of these five ML models in the two modes was evaluated by the receiver operating characteristic (ROC) curves on the test dataset, and SHapley Additive exPlanations (SHAP) was used for model visualization. Results: All five ML models showed good performance, with area under the ROC curve (AUC) ranging from 0.798 to 0.921. LightGBM and XGBoost demonstrated the best performance, outperforming the other models (P<0.05). The ML models constructed with radiomics-clinical features performed better than those constructed using only radiomic features (P<0.05). The SHAP visualization of the best-performing models indicated that the anteroposterior diameter, superoinferior diameter, original_shape_VoxelVolume, age, wavelet-LHL_firstorder_10Percentile, and left-to-right diameter had the most significant effect on the LightGBM model. On the other hand, the superoinferior diameter, anteroposterior diameter, left-to-right diameter, original_shape_VoxelVolume, original_firstorder_InterquartileRange, and age had the most significant effect on the XGBoost model. Conclusion: ML models based on radiomics and clinical features can accurately evaluate the cervical lymph node status in patients with HT combined with PTC. Among the 5 ML models, LightGBM and XGBoost demonstrate the best evaluation performance.


Assuntos
Doença de Hashimoto , Metástase Linfática , Aprendizado de Máquina , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Ultrassonografia , Humanos , Carcinoma Papilar/diagnóstico por imagem , Doença de Hashimoto/complicações , Doença de Hashimoto/diagnóstico por imagem , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Pescoço/diagnóstico por imagem , Radiômica , Curva ROC , Máquina de Vetores de Suporte , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/complicações , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos
6.
J Org Chem ; 88(22): 15925-15936, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939006

RESUMO

By using glyoxylic acid monohydrate as a promoter, a wide range of substances containing a C-SO2 bond could be obtained from N-substituted maleimides or quinones and sodium sulfinates. The protocol features mild reaction conditions, short reaction time, and good atomic economics, which provides an alternative protocol for the α-sulfonylation of α,ß-unsaturated ketones.

7.
Bioorg Med Chem Lett ; 92: 129409, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453616

RESUMO

Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways. Inhibitors of PDE5 are important therapeutics for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). We previously reported the first generation of quinoline-based PDE5 inhibitors for the treatment of AD. However, the short in vitro microsomal stability rendered them unsuitable drug candidates. Here we report a series of new quinoline-based PDE5 inhibitors. Among them, compound 4b, 8-cyclopropyl-3-(hydroxymethyl)-4-(((6-methoxypyridin-3-yl)methyl)amino)quinoline-6-carbonitrile, shows a PDE5 IC50 of 20 nM and improved in vitro microsomal stability (t1/2 = 44.6 min) as well as excellent efficacy in restoring long-term potentiation, a type of synaptic plasticity to underlie memory formation, in electrophysiology experiments with a mouse model of AD. These results provide an insight into the development of a new class of PDE5 inhibitors for the treatment of AD.


Assuntos
Doença de Alzheimer , Quinolinas , Camundongos , Animais , Inibidores da Fosfodiesterase 5/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Plasticidade Neuronal , Doença de Alzheimer/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico
8.
J Environ Manage ; 344: 118715, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562254

RESUMO

Petrochemical wastewater contains inhibitory compounds such as aromatics that are toxic to microorganisms during biological treatment. The compact and layered structure and the high amount of extracellular polymeric substances (EPS) in aerobic granular sludge (AGS) can contribute to protecting microorganisms from the harsh environment. This study evaluated the changes in the granule properties, pollutants removal, microbial metabolic potential and molecular microbial characteristics of the AGS process for petrochemical wastewater treatment. Granules treating petrochemical wastewater had a higher SVI30/SVI5 value (0.94) than that treating synthetic wastewater. An increase in bioactivity and EPS secretion with higher bio-polymer composition, specifically the functional groups such as hydroxyl, alkoxy and amino in protein, was observed, which promoted biomass aggregation. The granules also had more than 2-fold higher specific oxygen utilization rate. The AGS-SBR process obtained an average COD removal of 93% during petrochemical wastewater treatment and an effluent bCOD of below 1 mg L-1. No obvious inhibition of nitrification and denitrification activity was observed in the processes attributed to the layered structure of AGS. The average effluent NH4+-N of 5.0 mg L-1 was obtained and TN removal efficiencies of over 80.0% was achieved. Molecular microbial analysis showed that abundant functional genera Stenotrophomonas and Pseudoxanthomonas contributed to the degradation of aromatics and other petroleum organic pollutants. They were enriched with the variation of group behavior while metabolisms of amino acids and carboxylic acids by the relevant functional genera (e.g., Cytophagia) were significantly inhibited. The enrichment of Flavobacterium and Thermomonas promoted nitrification and denitrification, respectively. This research revealed the rapid start-up, enhanced granule structural strength, high inhibition resistance and considerable performance of AGS-SBR for petrochemical wastewater treatment.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Nitrificação , Aerobiose , Nitrogênio
9.
Cell Commun Signal ; 20(1): 98, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761358

RESUMO

BACKGROUND: Aspergillus fumigatus infection is difficult to diagnose clinically and can develop into invasive pulmonary aspergillosis, which has a high fatality rate. The incidence of Aspergillus fumigatus infection has increased die to widespread application of radiotherapy technology. However, knowledge regarding A. fumigatus infection following radiation exposure is limited, and the underlying mechanism remains unclear. In this study, we established a mouse model to explore the effect of radiation on A. fumigatus infection and the associated mechanisms. METHODS: In this study, a mouse model of A. fumigatus infection after radiation was established by irradiating with 5 Gy on the chest and instilling 5 × 107/ml Aspergillus fumigatus conidia into trachea after 24 h to explore the effect and study its function and mechanism. Mice were compared among the following groups: normal controls (CON), radiation only (RA), infection only (Af), and radiation + infection (RA + Af). Staining analyses were used to detect infection and damage in lung tissues. Changes in protein and mRNA levels of pyroptosis-related molecules were assessed by western blot analysis and quantitative reverse transcription polymerase chain reaction, respectively. Protein concentrations in the serum and alveolar lavage fluid were also measured. An immunofluorescence colocalization analysis was performed to confirm that NLRP3 inflammasomes activated pyroptosis. RESULTS: Radiation destroyed the pulmonary epithelial barrier and significantly increased the pulmonary fungal burden of A. fumigatus. The active end of caspase-1 and gasdermin D (GSDMD) were highly expressed even after infection. Release of interleukin-18 (IL-18) and interleukin-1ß (IL-1ß) provided further evidence of pyroptosis. NLRP3 knockout inhibited pyroptosis, which effectively attenuated damage to the pulmonary epithelial barrier and reduced the burden of A. fumigatus. CONCLUSIONS: Our findings indicated that the activation of NLRP3 inflammasomes following radiation exposure increased susceptibility to A. fumigatus infection. Due to pyroptosis in lung epithelial cells, it resulted in the destruction of the lung epithelial barrier and further damage to lung tissue. Moreover, we found that NLRP3 knockout effectively inhibited the pyroptosis and reducing susceptibility to A. fumigatus infection and further lung damage. Overall, our results suggest that NLRP3/GSDMD pathway mediated-pyroptosis in the lungs may be a key event in this process and provide new insights into the underlying mechanism of infection. Video abstract.


Assuntos
Aspergilose , Células Epiteliais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Animais , Aspergilose/metabolismo , Aspergillus fumigatus/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/microbiologia , Células Epiteliais/microbiologia , Inflamassomos/metabolismo , Pulmão/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Irradiação Corporal Total
10.
Cell Mol Biol Lett ; 27(1): 29, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305560

RESUMO

BACKGROUND: Acute lung injury (ALI) has received considerable attention in the field of intensive care as it is associated with a high mortality rate. Obacunone (OB), widely found in citrus fruits, is a natural bioactive compound with anti-inflammatory and antioxidant activities. However, it is not clear whether OB protects against lipopolysaccharide (LPS)-induced ALI. Therefore, in this study, we aimed to evaluate the protective effects of OB and the potential mechanisms against LPS-induced ALI and BEAS-2B cell injury. METHODS: We established a model of BEAS-2B cell injury and a mouse model of ALI by treating with LPS. Samples of in vitro model were subjected to cell death, Cell Counting Kit-8, and lactate dehydrogenase (LDH) release assays. The total number of cells and neutrophils, protein content, and levels of IL-6, TNF-α, and IL-1ß were determined in bronchoalveolar lavage fluid (BALF). Glutathione, reactive oxygen species, and malondialdehyde levels were determined in lung tissue. Additionally, immunohistochemical analysis, immunofluorescence, western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were conducted to examine the effects of OB. Furthermore, mice were treated with an Nrf2 inhibitor (ML385) to verify its role in ferroptosis. Data were analyzed using one-way analysis of variance or paired t-tests. RESULTS: Compared with the LPS group, OB effectively alleviated LPS-induced ALI by decreasing lung wet/dry weight ratio, reactive oxygen species and malondialdehyde production, and superoxide dismutase and glutathione consumption in vivo. In addition, OB significantly alleviated lung histopathological injury, reduced inflammatory cytokine secretion and Fe2+ and 4-HNE levels, and upregulated GPX4, SLC7A11, and Nrf2 expression. Mechanistically, OB activated Nrf2 by inhibiting Nrf2 ubiquitinated proteasome degradation. ML385 reversed the protective effects of OB against LPS-induced ALI. CONCLUSION: Overall, OB alleviates LPS-induced ALI, making it a potential novel protective agent against LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/farmacologia , Benzoxepinas , Limoninas , Lipopolissacarídeos/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo
11.
Neoplasma ; 69(5): 1101-1107, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35951457

RESUMO

Cholangiocarcinoma (CCA) is a disease that includes a variety of epithelial neoplasms characterized by the differentiation of cholangiocytes. M2 polarization is imperative to the development of CCA cells. In this study, we investigated the influence of secreted protein acidic and rich in cysteine (SPARC) on M2 polarization and CCA cell growth. We found that the SPARC level was amplified in M2-polarized macrophages and TAMs. In addition, the downregulation of SPARC prevented the M2 polarization of macrophages. Silencing SPARC inhibited the M2 macrophage-mediated effects on the proliferation, migration, and angiogenesis of CCA cells. Additionally, SPARC knockdown blocked the M2 polarization of macrophages by inhibiting the PI3K/AKT signaling. Moreover, an activator of PI3K signaling repressed the effect of SPARC knockdown on the M2 macrophage-induced elevation of proliferation, migration, and angiogenesis in CCA cells. In conclusion, SPARC contributes to the M2 polarization of macrophages to promote proliferation, migration, and angiogenesis of CCA cells, which provides new insight into the treatment of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Osteonectina , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/patologia , Cisteína/metabolismo , Humanos , Macrófagos , Neovascularização Patológica/patologia , Osteonectina/genética , Osteonectina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889206

RESUMO

Food-borne diseases caused by Salmonella enterica of 2500 serovars represent a serious public health problem worldwide. A quick identification for the pathogen serovars is critical for controlling food pollution and disease spreading. Here, we applied a mass spectrum-based proteomic profiling for identifying five epidemiologically important Salmonella enterica subsp. enterica serovars (Enteritidis, Typhimurium, London, Rissen and Derby) in China. By label-free analysis, the 53 most variable serovar-related peptides, which were almost all enzymes related to nucleoside phosphate and energy metabolism, were screened as potential peptide biomarkers, and based on which a C5.0 predicted model for Salmonella enterica serotyping with four predictor peptides was generated with the accuracy of 94.12%. In comparison to the classic gene patterns by PFGE analysis, the high-throughput proteomic fingerprints were also effective to determine the genotypic similarity among Salmonella enteric isolates according to each strain of proteome profiling, which is indicative of the potential breakout of food contamination. Generally, the proteomic dissection on Salmonella enteric serovars provides a novel insight and real-time monitoring of food-borne pathogens.


Assuntos
Salmonella enterica , Espectrometria de Massas , Proteoma , Proteômica , Salmonella , Salmonella enterica/genética , Sorotipagem
13.
World J Microbiol Biotechnol ; 38(10): 170, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904625

RESUMO

The infections caused by Pseudomonas aeruginosa are difficult to treat due to its multidrug resistance. A promising strategy for controlling P. aeruginosa infection is targeting the quorum sensing (QS) system. Actinomycin D isolated from the metabolite of endophyte Streptomyces cyaneochromogenes RC1 exhibited good anti-QS activity against P. aeruginosa PAO1. Actinomycin D (50, 100, and 200 µg/mL) significantly inhibited the motility as well as reduced the production of multiple virulence factors including pyocyanin, protease, rhamnolipid, and siderophores. The images of confocal laser scanning microscopy and scanning electron microscopy revealed that the treatment of actinomycin D resulted in a looser and flatter biofilm structure. Real-time quantitative PCR analysis showed that the expression of QS-related genes lasI, rhlI, rhlR, pqsR, pslA, and pilA were downregulated dramatically. The production of QS signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone and N-butanoyl-L-homoserine lactone were also decreased by actinomycin D. These findings suggest that actinomycin D, a potent in vitro anti-virulence agent, is a promising candidate to treat P. aeruginosa infection by interfering with the QS systems.


Assuntos
Percepção de Quorum , Streptomyces , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Dactinomicina/metabolismo , Dactinomicina/farmacologia , Endófitos/metabolismo , Pseudomonas aeruginosa/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Virulência/genética
14.
Biochem Biophys Res Commun ; 573: 27-34, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34384953

RESUMO

AIMS: Experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), is characterized by immune-mediated demyelination and neurodegeneration. NOD-like receptor protein 3 (NLRP3) inflammasome activation aggravates spinal cord inflammation in EAE. Autophagy is associated with alleviation of systemic inflammation, including that encountered in EAE. However, the effects of autophagy on NLRP3 in EAE are still unclear. Here, we evaluated the effects of the autophagy activator AZD8055 on EAE. METHODS: EAE model mice were established, histological examination was performed to assess the degree of inflammatory cell infiltration and demyelination. And the levels of autophagy and NLRP3-mediated pyroptosis in spinal cords were assessed. Western blotting and immunofluorescence analyses were performed to evaluate protein expression and localization. RESULTS: AZD8055 significantly enhanced autophagy in the spinal cords of EAE model mice, coupled with decreased abnormal clinical behavior scores and increased body weights. The degree of inflammatory cell infiltration and demyelination was mild in AZD8055-treated EAE model mice.Meanwhile, the pathway of ROS/NLRP3 was downregulated, and LC3 and NLRP3 were colocalized. CONCLUSIONS: AZD8055 ameliorated EAE through anti-inflammatory and anti-pyroptosis effects via the mammalian target of mTOR/ROS/NLRP3 pathway. These findings provide insights into the interactions between autophagy and pyroptosis and may facilitate the development of novel treatments for MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Morfolinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Biochem Biophys Res Commun ; 549: 54-60, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33662669

RESUMO

PURPOSE: MicroRNAs act as crucial regulators of a diverse range of biological processes, including chemoresistance. Our study aimed to investigate the effect of miR-324-3p on lung adenocarcinoma cell line A549 resistant to cis-diamminedichloroplatinum II (DDP, aka cisplatin). METHODS: The miR-324-3p expression levels in cisplatin-sensitive A549(A549) and cisplatin-resistant A549 (A549/DDP) cells were determined by qRT-PCR assay. Cell proliferation was determined with the commercial kit CCK-8 and colony formation assay, whereas cell death was analyzed using flow cytometry. The target gene of miR-324-3p was identified and validated with the luciferase reporter and western blot assays. The role of miR-324-3p in modulating cisplatin resistance was evaluated in vitro. RESULTS: The expression of miR-324-3p was found to be significantly downregulated in the A549/DDP cells. Conversely, miR-324-3p overexpression reversed cisplatin resistance in the cells. With regard to the possible mechanism underlying this phenomenon, we identified the glutathione peroxidase 4 (GPX4) gene as the direct target of miR-324-3p, where overexpression of the gene reversed the miR-324-3p effect of sensitizing the A549/DDP cells to cisplatin. Furthermore, the GPX4 inhibitor RSL3 could mimic the effect of miR-324-3p upregulation in increasing the sensitivity of the cisplatin-resistant cells to the drug. Significantly, miR-324-3p enhanced cisplatin-induced ferroptosis in the A549/DDP cells. CONCLUSION: Our findings revealed the role of the miR-324-3p-GPX4 signaling axis in A549/DDP cells and how the targeting of this axis could be a potential strategy for reversing cisplatin resistance in human non small cell lung cancer (NSCLC).


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células A549 , Adenocarcinoma de Pulmão/ultraestrutura , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33547060

RESUMO

As a water-soluble polymer, the widely used polyvinyl alcohol (PVA) is produced from hydrolysis of polyvinyl acetate. Microbial PVA carbon backbone cleavage via a two-step reaction of dehydrogenation and hydrolysis has been well studied. Content of acetyl group is a pivotal factor affecting performance of PVA derivatives in industrial application, and deacetylation is a non-negligible part in PVA degradation. However, the genetic and biochemical studies of its deacetylation remain largely elusive. Here, Comamonas sp. strain NyZ500 was isolated for its capability of growing on acetylated PVA from activated sludge. A spontaneous PVA-utilization deficient mutant strain NyZ501 was obtained when strain NyZ500 was cultured in rich media. Comparative analysis between the genomes of these two strains revealed a fragment (containing a putative hydrolase gene dacApva ) deletion in NyZ501 and dacApva-complemented strain NyZ501 restored the ability to grow on PVA. DacApva, which shares 21% identity with xylan esterase AxeA1 from Prevotella ruminicola 23, is a unique deacetylase catalyzing the conversion of acetylated PVA and its derivatives to deacetylated counterparts. This indicates that strain NyZ500 utilizes acetylated PVA via acetate as a carbon source to grow. DacApva also possessed the deacetylation ability for acetylated xylan and the antibiotic intermediate 7-aminocephalosporanic acid (7ACA) but the enzymes for the above two compounds had no activities against PVA derivatives. This study enhanced our understanding of the diversity of microbial degradation of PVA and DacApva characterized here is also a potential biocatalyst for the eco-friendly biotransformation of PVA derivatives and other acetylated compounds.IMPORTANCE: Water-soluble PVA, which possesses a very robust ability to accumulate in the environment, has a very grave environmental impact due to its widespread use in industrial and household applications. On the other hand, chemical transformation of PVA derivatives is currently being carried out at high energy consumption and high pollution conditions using hazardous chemicals (such as NaOH, methanol) under high temperatures. The DacApva reported here performs PVA deacetylation under mild conditions, then it has a great potential to be developed into an eco-friendly biocatalyst for biotransformation of PVA derivatives. DacApva also has deacetylation activity for compounds other than PVA derivatives, which facilitates its development into a broad-spectrum deacetylation biocatalyst for production of certain desired compounds.

17.
Appl Environ Microbiol ; 87(14): e0000721, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33990303

RESUMO

4-Nitrophenol, a priority pollutant, is degraded by Gram-positive and Gram-negative bacteria via 1,2,4-benzenetriol (BT) and hydroquinone (HQ), respectively. All enzymes involved in the two pathways have been functionally identified. So far, all Gram-negative 4-nitrophenol utilizers are from the genera Pseudomonas and Burkholderia. But it remains a mystery why pnpG, an apparently superfluous BT 1,2-dioxygenase-encoding gene, always coexists in the catabolic cluster (pnpABCDEF) encoding 4-nitrophenol degradation via HQ. Here, the physiological role of pnpG in Burkholderia sp. strain SJ98 was investigated. Deletion and complementation experiments established that pnpG is essential for strain SJ98 growing on 4-nitrocatechol rather than 4-nitrophenol. During 4-nitrophenol degradation by strain SJ98 and its two variants (pnpG deletion and complementation strains), 1,4-benzoquinone and HQ were detected, but neither 4-nitrocatechol nor BT was observed. When the above-mentioned three strains (the wild type and complementation strains with 2,2'-dipyridyl) were incubated with 4-nitrocatechol, BT was the only intermediate detected. The results established the physiological role of pnpG that encodes BT degradation in vivo. Biotransformation analyses showed that the pnpA-deleted strain was unable to degrade both 4-nitrophenol and 4-nitrocatechol. Thus, the previously characterized 4-nitrophenol monooxygenase PnpASJ98 is also essential for the conversion of 4-nitrocatechol to BT. Among 775 available complete genomes for Pseudomonas and Burkholderia, as many as 89 genomes were found to contain the putative pnpBCDEFG genes. The paucity of pnpA (3 in 775 genomes) implies that the extension of BT and HQ pathways enabling the degradation of 4-nitrophenol and 4-nitrocatechol is rarer, more recent, and likely due to the release of xenobiotic nitroaromatic compounds. IMPORTANCE An apparently superfluous gene (pnpG) encoding BT 1,2-dioxygenase is always found in the catabolic clusters involved in 4-nitrophenol degradation via HQ by Gram-negative bacteria. Our experiments reveal that pnpG is not essential for 4-nitrophenol degradation in Burkholderia sp. strain SJ98 but instead enables its degradation of 4-nitrocatechol via BT. The presence of pnpG genes broadens the range of growth substrates to include 4-nitrocatechol or BT, intermediates from the microbial degradation of many aromatic compounds in natural ecosystems. In addition, the existence of pnpCDEFG in 11.6% of the above-mentioned two genera suggests that the ability to degrade BT and HQ simultaneously is ancient. The extension of BT and HQ pathways including 4-nitrophenol degradation seems to be an adaptive evolution for responding to synthetic nitroaromatic compounds entering the environment since the industrial revolution.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Catecóis/metabolismo , Dioxigenases/metabolismo , Hidroquinonas/metabolismo , Nitrofenóis/metabolismo , Proteínas de Bactérias/genética , Biotransformação , Burkholderia/genética , Dioxigenases/genética , Pseudomonas/enzimologia , Pseudomonas/genética
18.
Org Biomol Chem ; 19(45): 9867-9871, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34734622

RESUMO

A [6 + 3] annulation reaction of Morita-Baylis-Hillman carbonates and dicyanoheptafulvene is accomplished by employing commercially available triphenylphosphine as the Lewis base catalyst. A spectrum of densely functionalized bicyclo[4.3.1]decane architectures are efficiently constructed with exclusive diastereoselectivity and good yield (up to 95%).

19.
Int J Cancer ; 146(9): 2563-2575, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498891

RESUMO

Metastasis is the leading cause of death for non-small cell lung cancer (NSCLC) patients. However, how lung cancer cells invade blood vessels during metastasis remains unclear. Here, based on bioinformatics analyses, we found that PLEK2 might regulate NSCLC migration and vascular invasion. As little is known about the function of PLEK2 in NSCLC, we aimed to clarify this. We demonstrated that PLEK2 was significantly upregulated in transforming growth factor beta 1 (TGF-ß1)-treated NSCLC cells through ELK1 transcriptional activation, highly expressed in NSCLC tissues, and negatively correlated with NSCLC overall survival. Meanwhile, PLEK2 overexpression significantly promoted NSCLC epithelial-to-mesenchymal transition (EMT) and migration, human lung microvascular endothelial cells endothelial-to-mesenchymal transition (EndoMT), and the destruction of vascular endothelial barriers. Moreover, PLEK2 knockdown inhibited TGF-ß1-induced EMT and EndoMT. Furthermore, PLEK2 was found to directly interact with SHIP2 and target it for ubiquitination and degradation in NSCLC cells. Next, we confirmed that SHIP2 overexpression inhibits NSCLC EMT, migration and invasion and showed that PLEK2 overexpression can activate SHIP2-associated TGF-ß/PI3K/AKT signaling. Our results suggest that PLEK2 could be a novel prognostic marker and potential therapeutic target for NSCLC metastasis and vascular invasion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/secundário , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Endotélio Vascular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Prognóstico , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Appl Microbiol Biotechnol ; 104(11): 5025-5037, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248442

RESUMO

Chromobacterium violaceum, one free-living Gram-negative bacterium, is abundantly presented in tropics and sub-tropics soil and aquatic environment; it is also an opportunistic human pathogen. Here, two cinnamic acid derivatives, i.e., 4-dimethylaminocinnamic acid (DCA) and 4-methoxycinnamic acid (MCA), were identified as potential quorum sensing (QS) and biofilm inhibitors in C. violaceum ATCC12472. Both DCA (100 µg/mL) and MCA (200 µg/mL) inhibited the levels of N-decanoyl-homoserine lactone (C10-HSL) and reduced the production of certain virulence factors in C. violaceum, including violacein, hemolysin, and chitinase. Metabolomics analysis indicated that QS-related metabolites, such as ethanolamine and L-methionine, were down-regulated after treatment with DCA and MCA. Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that DCA and MCA markedly suppressed the expression of two QS-related genes (cviI and cviR). In addition, DCA and MCA also inhibited biofilm formation and enhanced the susceptibility of biofilms to tobramycin, which was evidenced by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Our results indicated that DCA and MCA can serve as QS-based agent for controlling pathogens.Key Points • DCA and MCA inhibited QS and biofilm formation in C. violaceum.• The combination of DCA or MCA and tobramycin removed the preformed biofilm of C. violaceum. • DCA or MCA inhibited virulence factors and expressions of cviI and cviR of C. violaceum.• DCA or MCA are potential antibiotic accelerants for treating C. violaceum infection.


Assuntos
Antibacterianos/farmacologia , Chromobacterium/efeitos dos fármacos , Cinamatos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Tobramicina/farmacologia , Biofilmes/efeitos dos fármacos , Chromobacterium/genética , Cinamatos/química , Metabolômica , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA