Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 106(39): 16663-8, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805354

RESUMO

High consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer in epidemiological studies. There is preliminary evidence that sulforaphane, derived from glucoraphanin found in a number of crucifers, may prevent and induce regression of prostate cancer and other malignancies in preclinical models, but the mechanisms that may explain these effects are not fully defined. Recent reports show that sulforaphane may impair prostate cancer growth through inhibition of histone deacetylases, which are up-regulated in cancer. Indeed, one of these enzymes, histone deacetylase 6 (HDAC6), influences the acetylation state of a key androgen receptor (AR) chaperone, HSP90. AR is the central signaling pathway in prostate cancer, and its inhibition is used for both prevention and treatment of this disease. However, it is not known whether the effects of sulforaphane involve suppression of AR. We hypothesized that sulforaphane treatment would lead to hyperacetylation of HSP90 and that this would destabilize AR and attenuate AR signaling. We confirmed this by demonstrating that sulforaphane enhances HSP90 acetylation, thereby inhibiting its association with AR. Moreover, AR is subsequently degraded in the proteasome, which leads to reduced AR target gene expression and reduced AR occupancy at its target genes. Finally, sulforaphane inhibits HDAC6 deacetylase activity, and the effects of sulforaphane on AR protein are abrogated by overexpression of HDAC6 and mimicked by HDAC6 siRNA. The inactivation by sulforaphane of HDAC6-mediated HSP90 deacetylation and consequent attenuation of AR signaling represents a newly defined mechanism that may help explain this agent's effects in prostate cancer.


Assuntos
Anticarcinógenos/farmacologia , Histona Desacetilases/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Tiocianatos/farmacologia , Acetilação , Animais , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona , Histona Desacetilases/genética , Isotiocianatos , Masculino , Modelos Biológicos , Neoplasias da Próstata/genética , Sulfóxidos , Células Tumorais Cultivadas
2.
J Biol Chem ; 285(42): 32233-41, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693282

RESUMO

The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel. Several hERG1 isoforms with different N- and C-terminal ends have been identified. The hERG1a, hERG1b, and hERG1-3.1 isoforms contain the full-length C terminus, whereas the hERG1(USO) isoforms, hERG1a(USO) and hERG1b(USO), lack most of the C-terminal domain and contain a unique C-terminal end. The mechanisms underlying the generation of hERG1(USO) isoforms are not understood. We show that hERG1 isoforms with different C-terminal ends are generated by alternative splicing and polyadenylation of hERG1 pre-mRNA. We identified an intrinsically weak, noncanonical poly(A) signal, AGUAAA, within intron 9 of hERG1 that modulates the expression of hERG1a and hERG1a(USO). Replacing AGUAAA with the strong, canonical poly(A) signal AAUAAA resulted in the predominant production of hERG1a(USO) and a marked decrease in hERG1 current. In contrast, eliminating the intron 9 poly(A) signal or increasing the strength of 5' splice site led to the predominant production of hERG1a and a significant increase in hERG1 current. We found significant variation in the relative abundance of hERG1 C-terminal isoforms in different human tissues. Taken together, these findings suggest that post-transcriptional regulation of hERG1 pre-mRNA may represent a novel mechanism to modulate the expression and function of hERG1 channels.


Assuntos
Processamento Alternativo , Canais de Potássio Éter-A-Go-Go/metabolismo , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo , Animais , Sequência de Bases , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Poliadenilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Precursores de RNA/genética , Análise de Sequência de DNA , Distribuição Tecidual
3.
Circ Cardiovasc Genet ; 7(4): 482-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25028483

RESUMO

BACKGROUND: The KCNH2 gene encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier current in the heart. The relative expression of the full-length Kv11.1a isoform and the C-terminally truncated Kv11.1a-USO isoform plays an important role in regulation of channel function. The formation of C-terminal isoforms is determined by competition between the splicing and alternative polyadenylation of KCNH2 intron 9. It is not known whether changes in the relative expression of Kv11.1a and Kv11.1a-USO can cause long-QT syndrome. METHODS AND RESULTS: We identified a novel KCNH2 splice site mutation in a large family. The mutation, IVS9-2delA, is a deletion of the A in the AG dinucleotide of the 3' acceptor site of intron 9. We designed an intron-containing full-length KCNH2 gene construct to study the effects of the mutation on the relative expression of Kv11.1a and Kv11.1a-USO at the mRNA, protein, and functional levels. We found that this mutation disrupted normal splicing and resulted in exclusive polyadenylation of intron 9, leading to a switch from the functional Kv11.1a to the nonfunctional Kv11.1a-USO isoform in HEK293 cells and HL-1 cardiomyocytes. We also showed that IVS9-2delA caused isoform switch in the mutant allele of mRNA isolated from patient lymphocytes. CONCLUSIONS: Our findings indicate that the IVS9-2delA mutation causes a switch in the expression of the functional Kv11.1a isoform to the nonfunctional Kv11.1a-USO isoform. Kv11.1 isoform switch represents a novel mechanism in the pathogenesis of long-QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/patologia , Linhagem Celular , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/metabolismo , Deleção de Genes , Genótipo , Células HEK293 , Humanos , Íntrons , Síndrome do QT Longo/genética , Técnicas de Patch-Clamp , Linhagem , Fenótipo , Poliadenilação , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Hum Mol Genet ; 16(6): 640-50, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17309881

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fosfoproteínas/genética , Síndrome de Rett/genética , Animais , Estudos de Casos e Controles , Metilação de DNA , Feminino , Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , Síndrome de Rett/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA