Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555471

RESUMO

The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.


Assuntos
Monócitos , Fatores de Transcrição , Humanos , Monócitos/metabolismo , Fatores de Transcrição/metabolismo , Macrófagos/metabolismo , Diferenciação Celular/fisiologia , Transdiferenciação Celular/genética
2.
Sci Total Environ ; 825: 153930, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202693

RESUMO

A gravity-driven dynamic membrane bioreactors (DMBR) with GAC addition (G-DMBR) was operated under constant pressure filtration mode (using 20 cm water head) for real domestic wastewater treatment. During the stable operation period, the treatment performance, DM filtration behavior and mechanism as well as microbial properties were studied and compared with a control DMBR (C-DMBR). Both DMBRs showed stable removal of chemical oxygen demand (COD) and ammonia (NH4+-N) with average removal rates over 88% and 98%, respectively. GAC addition effectively enhanced dynamic membrane (DM) permeability with a stable flux of 17 to 65 L/m2h, which was approximately four times higher than that in the C-DMBR without GAC addition. Filtration resistance analysis indicated the DM formation can be divided to three stages: the formation of the initial DM layer, the development of mature DM layer and dynamic equilibrium stage of the DM layer. Filtration model analysis illustrated that added GAC could be the skeleton of the DM, resulting in a more porous and incompressible DM layer. Additionally, microbial community analysis revealed that in the G-DMBR several fouling-causing phyla including Proteobacteria reduced while other phyla preferring attached growth such as Bacteroidetes and Gemmatimonadetes increased. Thus, adding GAC to the DMBR can be an effective strategy for achieving stable and high-flux operation by modifying DM properties and regulating DM formation process and structure.


Assuntos
Microbiota , Purificação da Água , Reatores Biológicos , Carvão Vegetal , Filtração/métodos , Membranas Artificiais , Águas Residuárias/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA