Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(3): 752-761, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872239

RESUMO

This study explores the effect of apigenin(APG), oxymatrine(OMT), and APG+OMT on the proliferation of non-small cell lung cancer cell lines and the underlying mechanisms. Cell counting kit-8(CCK-8) assay was used to detect the vitality of A549 and NCI-H1975 cells, and colony formation assay to evaluate the colony formation ability of the cells. EdU assay was employed to examine the proliferation of NCI-H1975 cells. RT-qPCR and Western blot were performed to detect the mRNA and protein expression of PLOD2. Molecular docking was carried out to explore the direct action ability and action sites between APG/OMT and PLOD2/EGFR. Western blot was used to study the expression of related proteins in EGFR pathway. The viability of A549 and NCI-H1975 cells was inhibited by APG and APG+OMT at 20, 40, and 80 µmol·L~(-1) in a dose-dependent manner. The colony formation ability of NCI-H1975 cells was significantly suppressed by APG and APG+OMT. The mRNA and protein expression of PLOD2 was significantly inhibited by APG and APG+OMT. In addition, APG and OMT had strong binding activity with PLOD2 and EGFR. In APG and APG+OMT groups, the expression of EGFR and proteins in its downstream signaling pathways was significantly down-regulated. It is concluded that APG in combination with OMT could inhibit non-small lung cancer, and the mechanism may be related to EGFR and its downstream signaling pathways. This study lays a new theoretical basis for the clinical treatment of non-small cell lung cancer with APG in combination with OMT and provides a reference for further research on the anti-tumor mechanism of APG in combination with OMT.


Assuntos
Alcaloides , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apigenina , Simulação de Acoplamento Molecular , Quinolizinas , RNA Mensageiro , Receptores ErbB
2.
Sci Rep ; 14(1): 284, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168639

RESUMO

We examined the effects of climatic factors and Demodex infestations on meibomian gland dysfunction (MGD)-associated dry eye disease (DED) in a cross-sectional study. This study included 123 patients from Tianjin and Chengdu regions, and climate factors and the Air Quality Index (AQI) were recorded for one year. Ocular surface parameters and Demodex infestations were evaluated using various tests. Significant differences in all climatic factors and AQI were observed between Tianjin and Chengdu (P < 0.01), and ocular surface parameters also differed significantly between the two regions (P < 0.05). Temperature, relative humidity, and precipitation positively correlated with tear break-up time (BUT), meibum gland expressibility, and lid margin irregularity but negatively correlated with lissamine green staining scores (P < 0.05). Wind speed and atmospheric pressure positively correlated with corneal fluorescein staining and lissamine green staining but negatively correlated with BUT and lid margin irregularity (P < 0.05). AQI positively correlated with DED symptoms and corneal findings but negatively correlated with tear film stability and meibomian gland characteristics (P < 0.05). Demodex infestation was only positively correlated with meibum quality scores (P < 0.05). Our findings suggest that geographic climates influence ocular surface characteristics in MGD-associated DED, with daily precipitation potentially playing a significant role, and Demodex infestation contributes to meibum gland degeneration.


Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Humanos , Estudos Transversais , Glândulas Tarsais , Síndromes do Olho Seco/diagnóstico , Lágrimas
3.
Talanta ; 273: 125869, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490027

RESUMO

High-throughput drug screening (HTDS) has significantly reduced the time and cost of new drug development. Nonetheless, contact-dependent cell-cell communication (CDCCC) may impact the chemosensitivity of tumour cells. There is a pressing need for low-cost single-cell HTDS platforms, alongside a deep comprehension of the mechanisms by which CDCCC affects drug efficacy, to fully unveil the efficacy of anticancer drugs. In this study, we develop a microfluidic chip for single-cell HTDS and evaluate the molecular mechanisms impacted by CDCCC using quantitative mass spectrometry-based proteomics. The chip achieves high-quality drug mixing and single-cell capture, with single-cell drug screening results on the chip showing consistency with those on the 96-well plates under varying concentration gradients. Through quantitative proteomic analysis, we deduce that the absence of CDCCC in single tumour cells can enhance their chemoresistance potential, but simultaneously subject them to stronger proliferation inhibition. Additionally, pathway enrichment analysis suggests that CDCCC could impact several signalling pathways in tumour single cells that regulate vital biological processes such as tumour proliferation, adhesion, and invasion. These results offer valuable insights into the potential connection between CDCCC and the chemosensitivity of tumour cells. This research paves the way for the development of single-cell HTDC platforms and holds the promise of advancing tumour personalized treatment strategies.


Assuntos
Neoplasias , Proteômica , Humanos , Avaliação Pré-Clínica de Medicamentos , Comunicação Celular , Ensaios de Triagem em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA