Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838988

RESUMO

Quantum beat frequency is the basis for understanding interference effects and vibrational wave packet dynamics and has important applications. Using femtosecond time-resolved mass spectrometry and femtosecond time-resolved photoelectron image combined with theoretical calculations, we study the electronic excited-state relaxation of o-fluoraniline molecule and the time-dependent evolution of vibrational wave packets between different eigenstates. After the molecule absorbs a photon of 288.3 nm and is excited to the S1 state, intramolecular vibrational redistribution first occurs on the time scale τ1 = 349 fs, and then the transition to the triplet state occurs through the intersystem crossing on the time scale τ2 = 583 ps, and finally, the triplet state occurs decays slowly through the time scale τ3 = 2074 ps. We find the intramolecular vibrational redistribution is caused by the 00, 10b1 and 16a1 vibrational modes of the Sl state origin. That is, the 288.3 nm femtosecond laser excites the molecule to the S1 state, and the continuous flow of the vibrational wave packet prepares a coherent superposition state of three vibrational modes. Through extracting the oscillation of different peak intensities in the photoelectron spectrum, we observe reversible changes caused by mutual interference of the S1 00, S1 10b1 and S1 16a1 states when the wave packets flow. When the pump pulse is 280 nm, the beat frequency disappears completely. This is explained in terms of increases in the vibrational field density and characteristic period of oscillation, and statistical averaging makes the quantum effect smooth and indistinguishable. In addition, the Rydberg component of the S1 state is more clearly resolved by combining experiment and theory.


Assuntos
Teoria Quântica , Vibração , Fatores de Tempo , Espectrometria de Massas , Lasers
2.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234780

RESUMO

2-methylpyrazine was excited to the high vibrational dynamics of the S1 state with 260 nm femtosecond laser light, and the evolution of the excited state was probed with 400 nm light. Because it was unstable, the S1 state decayed via intersystem crossing to the triplet state T1, and it may have decayed to the ground state S0 via internal conversion. S1-to-T1 intersystem crossing was observed by combining time-resolved mass spectrometry and time-resolved photoelectron spectroscopy. The crossover time scale was 23 ps. Rydberg states were identified, and the photoelectron spectral and angular distributions indicated accidental resonances of the S1 and T1 states with the 3s and 3p Rydberg states, respectively, during ionization.


Assuntos
Teoria Quântica , Vibração , Diagnóstico por Imagem , Lasers , Espectroscopia Fotoeletrônica
3.
J Chem Phys ; 154(5): 054301, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557549

RESUMO

Structure rearrangement processes, such as isomerization, are attracting extensive interest as a potential carrier in molecular scale electronics design. UV-light-triggered isomerization of Rydberg-excited propanal with two UV photons has been investigated with time-resolved photoelectron spectroscopy. By following the photoionization from 3s Rydberg states in the time domain, the ultrafast structural evolution and the corresponding photoisomerization dynamics are observed and tracked in real-time. The conversion barrier for isomerization from cis-propanal to gauche isomer is estimated to be about 1500 ± 100 cm-1 experimentally. Both the photoisomerization yield and the conversion rate have shown strong dependence on the excitation energy. It is observed that whether vibration modes are selectively excited or not, cis-to-gauche photoisomerization of propanal in 3s Rydberg state occurs once the excitation energy is higher than the conversion barrier without any vibrational excitation specificity. This yields a powerful approach to studying structural evolution dynamics in large molecules, which may have applications in molecular devices.

4.
J Phys Chem A ; 121(20): 3858-3863, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28464608

RESUMO

The 7sσ and 6pσ superexcited Rydberg states of OCS belonging to series converging onto the B̃2Σ+ ionic limit have been successfully prepared by three-photon UV excitation, and their ensuing competing relaxation processes have been probed by a time-delayed IR ionization pulse. The time profiles of S+ ions, which encode their fragmentation mechanism, are only observable at high pump intensities, thus providing unique experimental identification of the neutral predissociation channel producing S* atoms. Benefiting from this feature and by comparison with the time behavior of OCS+ ions, three competing relaxation channels are identified: autoionization associated with both X̃2Π and Ã2Π ionic states; internal conversion to isoenergetic RA states, the deactivation of which manifests as a picosecond decay in the time profile of OCS+ ions; picosecond neutral predissociation appearing as a nondecaying plateau in the time profiles of S+ ions.

5.
Chemosphere ; 253: 126747, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464759

RESUMO

The photolysis dynamics of m-fluorophenol (m-FPhOH) and o-fluorophenol (o-FPhOH) have been investigated with time-resolved velocity map imaging (TR-VMI) and time-resolved ion-yield (TR-IY) techniques. Following excitation to the origin of S1 (ππ∗) state of m- and o-FPhOH, H atoms elimination mediated by tunneling through the potential barrier under the S1 (ππ∗)/S2 (πσ∗) conical intersection (CI) has been observed as a Gaussian feature signal centered at a total kinetic energy release (TKER) of ∼6000 cm-1 for both molecules. The quantum tunneling mechanism has been identified as the main decay pathway of S1 state for m-FPhOH, and the tunneling lifetime of 2.1 ns has been obtained from the TR-VMI measurements of H fragments. This tunneling mechanism is further confirmed by the studies on the selective O-H deuterated species, m-FPhOD, and consolidated by our theoretical calculations. However, the photolysis dynamics is quite different for the photoexcited o-FPhOH. The much lower yield of the H atoms originating from tunneling hinders the extraction of a reliable tunneling lifetime for o-FPhOH. Our theoretical calculations exhibit a broader and higher potential barrier exists beneath the S1/S2 CI of o-FPhOH, which increase the difficulty for tunneling. Furthermore, the special existence of intramolecular hydrogen bond in o-FPhOH is probably also the key factor that affects the tunneling rate, which would restrict the O-H stretch motion.


Assuntos
Modelos Químicos , Fenóis/química , Fotólise , Ligação de Hidrogênio
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 109-115, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28441538

RESUMO

Ultrafast electronic relaxation processes following two photoexcitation of 400nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of ~85±10fs and 2.4±0.3ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA