Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9377-9384, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39011986

RESUMO

Nonreciprocal quantum devices, allowing different transmission efficiencies of light-matter polaritons along opposite directions, are key technologies for modern photonics, yet their miniaturization and fine manipulation remain an open challenge. Here, we report on magnetochiral plexcitons dressed with geometric-time double asymmetry in compact nonreciprocal hybrid metamaterials, leading to triple plexcitonic nonreciprocity with flexible controllability. A general magnetically dressed plexcitonic Born-Kuhn model is developed to reveal the hybrid optical nature and dynamic energy evolution of magnetochiral plexcitons, demonstrating a plexcitonic nonreciprocal mechanism originating from the strong coupling among photon, electron, and spin degrees of freedom. Moreover, we introduce the temperature-controlled knob/switch for magnetochiral plexcitons, achieving precise magnetochiral control and nonreciprocal transmission in a given system. We expect this mechanism and approach to open up a new route for the integration and fine control of on-chip nonreciprocal quantum devices.

2.
Opt Express ; 32(7): 11522-11533, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570997

RESUMO

Hybrid quasiparticles produced by the strong interaction between nanostructures and excitons will exhibit optical chirality when one of the coupled components is chiral. Due to the tunability of hybrid states, the coupled system has potential applications in chiral devices and chiral sensing. However, reported chiral materials including chiral molecules and three-dimensional chiral structures in the coupled system limit the application due to the weak chiroptical responses and difficult fabrication, respectively. In this paper, we design chiral quasibound states in the continuum (q-BIC) metasurface by introducing planar symmetry-breaking and z-axis perturbation into an array structure whose unit cell is a C4 rotational symmetric disk. By tuning the polarization state of the eigenmode, a significant chiroptical response is obtained in our q-BIC metasurface. Furthermore, mode splitting is observed not only in the reflection spectrum but also in the circular dichroism (CD) spectrum in the chiral q-BIC and monolayer WS2 strong coupling system, which indicates the realization of the exciton-polariton optical chirality. More importantly, one order of magnitude difference in the reflection to left and right circularly polarized light is achieved resulting in significant CD signals. Our work provides a new strategy to realize the exciton polaritons with significant chiroptical responses, which exhibits promising applications in on-chip chiral devices.

3.
Opt Lett ; 49(11): 2930-2933, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824295

RESUMO

We propose a plasmonic nanolaser based on a metal-insulator-semiconductor-insulator-metal (MISIM) structure, which effectively confines light on a subwavelength scale (∼λ/14). As the pump power increases, the proposed plasmonic nanolaser exhibits broadband output characteristics of 20 nm, and the maximum output power can reach 20 µW. Furthermore, the carrier lifetime at the upper energy level in our proposed structure is measured to be about 400 fs using a double pump-probe excitation. The ultrafast characteristic is attributed to the inherent Purcell effect of plasmonic systems. Our work paves the way toward deep-subwavelength mode confinement and ultrafast femtosecond plasmonic lasers in spaser-based interconnected, eigenmode engineering of plasmonic nanolasers, nano-LEDs, and spontaneous emission control.

4.
Nano Lett ; 23(20): 9428-9436, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823692

RESUMO

Chiral plexcitons, produced by the strong interaction between plasmonic nanocavities and chiral molecules, can provide a promising direction for controlling chiroptical responses on the nanoscale. Here, we reveal the chiral origin and electromagnetic hybridization process in chiral strongly coupled systems. The mechanism and unique advantages of chiral plexcitons for fine-tuning circular dichroism (CD) responses are demonstrated, providing a rule for controlling chiral light-matter interactions in complex chiral nanosystems. Furthermore, we experimentally demonstrate the fine-tuning of chiral plexcitons in hybrid systems consisting of plasmonic nanoparticles and chiral J-aggregates. Continuous and precise tuning of the CD resonance positions was successfully achieved in a given structure. Compared with the previous work, the CD spectral tuning accuracy has been improved by an order of magnitude, which can reach the level of 1 nm. Our findings provide a feasible strategy and theoretical basis for accurately controlling chirality in multiple dimensions.

5.
Opt Express ; 31(20): 32082-32092, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859018

RESUMO

Chiral plexcitonic systems exhibit a novel chiroptical phenomenon, which can provide a new route to design chiroptical devices. Reported works focused on the two-mode strong coupling between chiral molecules and nanoparticles, while multiple-mode coupling can provide richer modulation. In this paper, we proposed a three-mode coupling system consisting of a chiral Au helices array, a Fabry-Pérot cavity, and monolayer WSe2, which can provide an extra chiral channel, a more widely tunable region, and more tunable methods compared to two-mode coupled systems. The optical response of this hybrid system was investigated based on the finite element method. Mode splitting observed in the circular dichroism (CD) spectrum demonstrated that the chiroptical response successfully shifted from the resonant position of the chiral structure to three plexcitons through strong coupling, which provided a new route for chiral transfer. Furthermore, we used the coupled oscillator model to obtain the energy and Hopfield coefficients of the plexciton branches to explain the chiroptical phenomenon of the hybrid system. Moreover, the tunability of the hybrid system can be achieved by tuning the temperature and period of the helices array. Our work provides a feasible strategy for chiral sensing and modulation devices.

6.
Opt Express ; 31(6): 10249-10259, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157576

RESUMO

Diexcitonic strong coupling between quantum emitters and localized surface plasmon has attracted more attention recently because it can provide multiple qubit states for future quantum information technology at room temperature. In a strong coupling regime, nonlinear optical effects can offer new routes for developing quantum devices, but it is rarely reported. In this paper, we established the hybrid system consisting of J-aggregates-WS2-cuboid Au@Ag nanorods, which can realize diexcitonic strong coupling and second harmonic generation (SHG). We find that multimode strong coupling has been achieved not only in the fundamental frequency scattering spectrum but also in the SHG scattering spectrum. SHG scattering spectrum shows three plexciton branches, similar to the splitting in the fundamental frequency scattering spectrum. Furthermore, the SHG scattering spectrum can be modulated by tuning the armchair direction of the crystal lattice, pump polarization direction, and plasmon resonance frequency, which makes our system very promising in the quantum device at room temperature. Moreover, we develop coupled nonlinear harmonic oscillator model theory to explain the nonlinear diexcitonic strong coupling mechanism. The calculated results by the finite element method accord well with our theory. The nonlinear optical properties of the diexcitonic strong coupling can provide potential applications such as quantum manipulation, entanglement, and integrated logic devices.

7.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668199

RESUMO

Manipulating plasmonic chirality has shown promising applications in nanophotonics, stereochemistry, chirality sensing, and biomedicine. However, to reconfigure plasmonic chirality, the strategy of constructing chiral plasmonic systems with a tunable morphology is cumbersome and complicated to apply for integrated devices. Here, we present a simple and effective method that can also manipulate chirality and control chiral light-matter interactions only via strong coupling between chiral plasmonic nanoparticles and excitons. This paper presents a chiral plexcitonic system consisting of L-shaped nanorod dimers and achiral molecule excitons. The circular dichroism (CD) spectra in our strong-coupling system can be calculated by finite element method simulations. We found that the formation of the chiral plexcitons can significantly modulate the CD spectra, including the appearance of new hybridized peaks, double Rabi splitting, and bisignate anti-crossing behaviors. This phenomenon can be explained by our extended coupled-mode theory. Moreover, we explored the applications of this method in enantiomer ratio sensing by using the properties of the CD spectra. We found a strong linear dependence of the CD spectra on the enantiomer ratio. Our work provides a facile and efficient method to modulate the chirality of nanosystems, deepens our understanding of chiral plexcitons in nanosystems, and facilitates the development of chiral devices and chiral sensing.

8.
ACS Nano ; 15(2): 2292-2300, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33356158

RESUMO

Understanding the unique characteristics of plexcitons, hybridized states resulting from the strong coupling between plasmons and excitons, is vital for both fundamental studies and practical applications in nano-optics. However, the research of plexcitons from the perspective of chiral optics has been rarely reported. Here, we experimentally investigate the optical chirality of plexcitonic systems consisting of composite metal nanoparticles and chiral J-aggregates in the strong coupling regime. Mode splitting and anticrossing behavior are observed in both the circular dichroism (CD) and extinction spectra of the hybrid nanosystems. A large mode splitting (at zero detuning) of up to 136 meV/214 meV in CD/extinction measurements confirms that the systems attain the strong coupling regime. This phenomenon indicates that the formation of plexcitons modifies not only the extinction but also the optical chirality of the hybrid systems. We develop a quasistatic theory to elucidate the chiral optical responses of hybrid systems. Furthermore, we propose and justify a criterion of strong plasmon-exciton interaction: the mode splitting in the CD spectra (at zero detuning) is larger than half of that in the extinction spectra. Our findings give a chiral perspective on the study of strong plasmon-exciton coupling and have potential applications in the chiral optical field.

9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3391-2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25959137

RESUMO

We determined the complete mitochondrial genome of Kaloula rugifera in this work. The mitogenome was 17,073 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region (D-loop). The base composition of the light strand was 29.7% A, 30.4% T, 25.7% C and 14.2% G. The gene order and contents of it is identical to most amphibian mitogenome. All protein-coding genes began with ATG as start codon except ND1 gene beginning with GTG and COI gene beginning with ATA. Five protein-coding genes (COII, ATP 6, COIII, ND3 and ND4) ended with incomplete stop codon T. The 22 tRNA genes with the size ranging from 65 bp to 73 bp were interspersed along the whole genome. The D-loop region containing tandem repetition was 1675 bp in length and heavily biased to A + T nucleotides.


Assuntos
Anuros/genética , Genoma Mitocondrial , Animais , Composição de Bases , Códon de Iniciação/genética , Códon de Terminação/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , NADH Desidrogenase/genética , Fases de Leitura Aberta , RNA Ribossômico/genética , RNA de Transferência/genética , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA